
Apago PDF Enhancer

The (non-static) methods of a class are called the instance methods of the class.

In the definition of the class Clock, all the data members are private and all the

method members are public. However, a method can also be private. For example,

if a method is only used to support other methods of the class, and the user of the

class does not need to access this method, you make it private.

Notice that we have not yet written the definitions of the methods of the class Clock.
(You will learn how to write them in the section Definitions of the Constructors
and Methods of the class Clock.) Also notice that the method equals has only
one parameter, although you need two things to make a comparison. Similarly, the method
makeCopy has only one parameter. An example later in this chapter will help explain why.

Before giving the definition of the class Clock, we first introduce another important
concept related to classes—constructors.

Constructors
In addition to the methods necessary to implement operations, every class can have special
types of methods called constructors. A constructor has the same name as the class, and
it executes automatically when an object of that class is created. Constructors are used to
guarantee that the instance variables of the class are initialized.

There are two types of constructors: those with parameters and those without parameters.
The constructor without parameters is called the default constructor.

Constructors have the following properties:

• The name of a constructor is the same as the name of the class.

• A constructor, even though it is a method, has no return type. That is, it
is neither a value-returning method nor a void method.

• A class can have more than one constructor. However, all constructors of a
class have the same name. That is, the constructors of a class can be overloaded.

• If a class has more than one constructor, the constructors must have
different signatures.

• Constructors execute automatically when class objects are instantiated.
Because they have no types, they cannot be called like other methods.

• If there are multiple constructors, the constructor that executes depends on the
type of values passed to the class object when the class object is instantiated.

For the class Clock, we will include two constructors: the default constructor and a
constructor with parameters. The default constructor initializes the instance variables used
to store the hours, minutes, and seconds, each to 0. Similarly, the constructor with
parameters initializes the instance variables to the values specified by the user. We will
illustrate shortly how constructors are invoked.

8

Classes and Objects | 431

Apago PDF Enhancer

The heading of the default constructor is:

public Clock()

The heading of the constructor with parameters is:

public Clock(int hours, int minutes, int seconds)

The definition of the class Clock has 16 members: 11 methods to implement the 11
operations, 2 constructors, and 3 instance variables to store the hours, minutes, and
seconds.

If you do not include any constructor in a class, then Java automatically provides the

default constructor. Therefore, when you create an object, the instance variables are

initialized to their default values. For example, int variables are initialized to 0. If you

provide at least one constructor and do not include the default constructor, then Java

will not automatically provide the default constructor. Generally, if a class includes

constructors, you should also include the default constructor.

Unified Modeling Language Class Diagrams
A class and its members can be described graphically using Unified Modeling Language

(UML) notation. For example, Figure 8-1 shows the UML diagram of the class Clock.
Also, what appears in the figure is called the UML class diagram of the class.

Clock

-hr: int
-min: int
-sec: int

+Clock()
+Clock(int, int, int)
+setTime(int, int, int): void
+getHours(): int
+getMinutes(): int
+getSeconds(): int
+printTime(): void
+incrementSeconds(): int
+incrementMinutes(): int
+incrementHours(): int
+equals(Clock): boolean
+makeCopy(Clock): void
+getCopy(): Clock

FIGURE 8-1 UML class diagram of the class clock

432 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

The top box in the UML diagram contains the name of the class. The middle box
contains the data members and their data types. The last box contains the method names,
parameter list, and return types. The + (plus) sign in front of a member indicates that it is a
public member; the – (minus) sign indicates that it is a private member. The # symbol
before a member name indicates that it is a protected member.

Variable Declaration and Object Instantiation
Once a class is defined, you can declare reference variables of that class type. For
example, the following statements declare myClock and yourClock to be reference
variables of type Clock:

Clock myClock; //Line 1
Clock yourClock; //Line 2

These statements do not allocate memory spaces to store the hours, minutes, and seconds.
Next, we explain how to allocate memory space to store the hours, minutes, and seconds,
and how to access that memory space using the variables myClock and yourClock.

The class Clock has three instance variables. To store the hours, minutes, and seconds,
we need to create a Clock object, which is accomplished by using the operator new.

The general syntax for using the operator new is:

new className() //Line 3

or:

new className(argument1, argument2, ..., argumentN) //Line 4

The expression in Line 3 instantiates the object and initializes the instance variables of the
object using the default constructor. The expression in Line 4 instantiates the object and
initializes the instance variables using a constructor with parameters.

For the expression in Line 4:

• The number of arguments and their type should match the formal
parameters (in the order given) of one of the constructors.

• If the type of the arguments does not match the formal parameters of any
constructor (in the order given), Java uses type conversion and looks for
the best match. For example, an integer value might be converted to a
floating-point value with a zero decimal part. Any ambiguity will result
in a compile-time error.

Consider the following statements (notice that myClock and yourClock are as declared
in Lines 1 and 2):

myClock = new Clock(); //Line 5
yourClock = new Clock(9, 35, 15); //Line 6

Classes and Objects | 433

Apago PDF Enhancer

The statement in Line 5 allocates memory space for a Clock object, initializes each instance
variable of the object to 0, and stores the address of the object into myClock. The statement
in Line 6 allocates memory space for a Clock object; initializes the instance variables hr, min,
and sec of the object to 9, 35, and 15, respectively; and stores the address of the object into
yourClock (see Figure 8-2).

To be specific, we call the object to which myClock points the object myClock and the
object to which yourClock points the object yourClock (see Figure 8-3).

Of course, you can combine the statements to declare the variable and instantiate the object
into one statement. For example, the statements in Lines 1 and 5 can be combined as:

Clock myClock = new Clock(); //declare and instantiate myClock

That is, the preceding statement declares myClock to be a reference variable of type Clock
and instantiates the object myClock to store the hours, minutes, and seconds. Each instance
variable of the object myClock is initialized to 0 by the default constructor.

Similarly, the statements in Lines 2 and 6 can be combined as:

Clock yourClock = new Clock(9, 35, 15); //declare and
//instantiate yourClock

hr 9

min 35

sec 15

yourClock

hr 0

min 0

sec 0

myClock

Reference
variable

Clock
object

Reference
variable

Clock
object

FIGURE 8-2 Variables myClock and yourClock and associated Clock objects

yourClockmyClock

Object myClock Object yourClock

hr 9

min 35

sec 15

hr 0

min 0

sec 0

FIGURE 8-3 Objects myClock and yourClock

434 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

That is, the preceding statement declares yourClock to be a reference variable of type
Clock and instantiates the object yourClock to store the hours, minutes, and seconds.
The instance variables hr, min, and sec of the object yourClock are initialized to 9, 35,
and 15, respectively, by the constructor with parameters.

When we use phrases such as ‘‘create an object of a class type’’ we mean to: (i) declare

a reference variable of the class type, (ii) instantiate the class object, and

(iii) store the address of the object into the reference variable declared. For example,

the following statements create the object tempClock of the Clock type:

Clock tempClock = new Clock();

The object tempClock is accessed via the reference variable tempClock.

Recall from Chapter 3 that a class object is called an instance of that class.

Accessing Class Members
Once an object of a class is created, the object can access the members (as explained in the
next paragraph, after the syntax) of the class. The general syntax for an object to access a
data member or a method is:

referenceVariableName.memberName

The class members that the class object can access depend on where the object is created.

• If the object is created in the definition of a method of the class, then the
object can access both the public and private members. We will
elaborate on this when we write the definitions of the methods equals,
makeCopy, and getCopy of the class Clock later in this chapter.

• If the object is created elsewhere (for example, in a user’s program), then
the object can access only the public members of the class.

Recall that in Java, the dot . (period) is called the member access operator.

Example 8-1 illustrates how to access the members of a class.

EXAMPLE 8-1

Suppose that the objects myClock and yourClock have been created as before. Consider
the following statements:

myClock.setTime(5, 2, 30);
myClock.printTime();
yourClock.setTime(x, y, z); //Assume x, y, and z are variables

//of type int that have been
//initialized.

Classes and Objects | 435

Apago PDF Enhancer

if (myClock.equals(yourClock))
.
.
.

These statements are legal; that is, they are syntactically correct. Note the following:

• In the first statement, myClock.setTime(5, 2, 30);, the method
setTime is executed. The values 5, 2, and 30 are passed as parameters
to the method setTime, and the method uses these values to set the
values of hr, min, and sec of the object myClock to 5, 2, and 30,
respectively.

• Similarly, the second statement executes the method printTime and
outputs the values of hr, min, and sec of the object myClock.

• In the third statement, the values of the variables x, y, and z are used to
set the values of hr, min, and sec of the object yourClock.

• In the fourth statement, the method equals executes and compares the
instance variables of the object myClock with the corresponding instance
variables of the object yourClock. Because in this statement the method
equals is invoked by the variable myClock, it has direct access to the
instance variables of the object myClock. So it needs one more object to
compare, which, in this case, is the object yourClock. This explains why
the method equals has only one parameter.

The objects myClock and yourClock can access only public members of the class. The
following statements are illegal because hr and min are private members of the class
Clock and, therefore, cannot be accessed by myClock and yourClock:

myClock.hr = 10; //illegal
myClock.min = yourClock.min; //illegal

Built-in Operations on Classes
Most of Java’s built-in operations do not apply to classes. You cannot perform arithmetic
operations on class objects. For example, you cannot use the operator + to add the values
of two Clock objects. Also, you cannot use relational operators to compare two class
objects in any meaningful way.

The built-in operation that is valid for classes is the dot operator (.). A reference variable
uses the dot operator to access public members; classes can use the dot operator to access
public static members.

Assignment Operator and Classes: A Precaution
This section discusses how the assignment operator works with reference variables and
objects.

436 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

Suppose that the objects myClock and yourClock are as shown in Figure 8-4.

The statement:

myClock = yourClock;

copies the value of the reference variable yourClock into the reference variable
myClock. After this statement executes, both yourClock and myClock refer to the same
object. Figure 8-5 illustrates this situation.

This is called the shallow copying of data. In shallow copying, two or more reference
variables of the same type point to the same object; that is, two or more reference
variables become aliases. Note that the object originally referred to by myClock becomes
inaccessible.

To copy the instance variables of the object yourClock into the corresponding instance
variables of the object myClock, you need to use the method makeCopy. This is
accomplished by the following statement:

myClock.makeCopy(yourClock);

After this statement executes:

1. The value of yourClock.hr is copied into myClock.hr.

2. The value of yourClock.min is copied into myClock.min.

3. The value of yourClock.sec is copied into myClock.sec.

8

yourClockmyClock

hr 7

min 27

sec 36

hr 10

min 28

sec 45

FIGURE 8-4 myClock and yourClock

yourClockmyClock

hr 7

min 27

sec 36

hr 10

min 28

sec 45

FIGURE 8-5 myClock and yourClock after the statement myClock ¼ yourClock; executes

Classes and Objects | 437

Apago PDF Enhancer

In other words, the values of the three instance variables of the object yourClock are copied
into the corresponding instance variables of the object myClock, as shown in Figure 8-6.

This is called the deep copying of data. In deep copying, each reference variable refers
to its own object, as in Figure 8-6, not the same object, as in Figure 8-5.

Another way to avoid the shallow copying of data is to have the object being copied
create a copy of itself, and then return a reference to the copy. This is accomplished by
the method getCopy. Consider the following statement:

myClock = yourClock.getCopy();

In this statement, the expression yourClock.getCopy() makes a copy of the object
yourClock and returns the address, that is, the reference, of the copy. The assignment
statement stores this address into myClock.

The methods makeCopy and getCopy are both used to avoid the shallow copying

of data. The main difference between these two methods is: To use the method

makeCopy, both objects—the object whose data is being copied and the object

that is copying the data—must be instantiated before invoking this method. To use

the method getCopy, the object whose data is being copied must be instantiated

before invoking this method, while the object of the reference variable receiving a

copy of the data need not be instantiated. Note that makeCopy and getCopy are

user-defined methods.

It is important to understand the difference between the shallow and deep copying of data

and when to use which. Shallow copying can produce unintended results, especially

by beginning Java programmers.

Class Scope
A reference variable follows the same scope rules as other variables. A member of a class is
local to the class. You access a public class member outside the class through the
reference variable name or the class name (for static members) and the member
access operator (.).

hr 7

min 27

sec 36

yourClockmyClock

hr 7

min 27

sec 36

FIGURE 8-6 Objects myClock and yourClock after the statement
myClock.makeCopy(yourClock); executes

438 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

Methods and Classes
Reference variables can be passed as parameters to methods and returned as method
values. Recall from Chapter 7 that when a reference variable is passed as a parameter to a
method, both the formal and actual parameters point to the same object.

Definitions of the Constructors and Methods
of the class Clock
We now give the definitions of the methods of the class Clock, then we will write the
complete definition of this class. First, note the following:

1. The class Clock has 11 methods: setTime, getHours, getMinutes,
getSeconds, printTime, incrementHours, incrementMinutes,
incrementSeconds, equals, makeCopy, and getCopy. It has two
constructors and three instance variables: hr, min, and sec.

2. The three instance variables—hr, min, and sec—are private to the
class and cannot be accessed directly outside the class.

3. The 11 methods—setTime, getHours, getMinutes, getSeconds,
printTime, incrementHours, incrementMinutes, incrementSeconds,
equals,makeCopy, andgetCopy—can directly access the instance vari-
ables (hr, min, and sec). In other words, we do not pass instance
variables or data members as parameters to these methods. Similarly,
constructors directly access the instance variables.

Let’s first write the definition of the method setTime. The method setTime has three
parameters of type int. This method sets the instance variables to the values specified by
the user, which are passed as parameters to this function. The definition of the method
setTime follows:

public void setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

8

Classes and Objects | 439

Apago PDF Enhancer

Note that the definition of the method setTime checks for the valid values of
hours, minutes, and seconds. If any of these values is out of range, the
corresponding instance variable is initialized to 0. Now let’s look at how the method
setTime works.

The method setTime is a void method and has three parameters. Therefore:

• A call to this method is a stand-alone statement.

• We must use three parameters in a call to this method.

Furthermore, recall that because setTime is a member of the class Clock, it can directly
access the instance variables hr, min, and sec, as shown in the definition of setTime.

Suppose that the object myClock is as shown in Figure 8-7.

Consider the following statement:

myClock.setTime(3, 48, 52);

The variable myClock accesses the member setTime. In the statement
myClock.setTime(3, 48, 52);, setTime is accessed by the variable myClock. There-
fore, the three variables—hr, min, and sec—referred to in the body of the method
setTime are the three instance variables of the object myClock. Thus, the values 3, 48,
and 52, which are passed as parameters in the preceding statement, are assigned to the
three instance variables of the object myClock by the method setTime (see the body of
the method setTime). After the previous statement executes, myClock is as shown in
Figure 8-8.

myClock

hr 12

min 36

sec 49

FIGURE 8-7 Object myClock

myClock

hr 3

min 48

sec 52

FIGURE 8-8 myClock after statement myClock.setTime(3,48,52); executes

440 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

Next, let’s give the definitions of the other methods of the class Clock. These
definitions are simple and easy to follow.

public int getHours()
{

return hr; //return the value of hr
}

public int getMinutes()
{

return min; //return the value of min
}

public int getSeconds()
{

return sec; //return the value of sec
}

public void printTime()
{

if (hr < 10)
System.out.print("0");

System.out.print(hr + ":");

if (min < 10)
System.out.print("0");

System.out.print(min + ":");

if (sec < 10)
System.out.print("0");

System.out.print(sec);
}

public void incrementHours()
{

hr++; //increment the value of hr by 1

if (hr > 23) //if hr is greater than 23,
hr = 0; //set hr to 0

}

public void incrementMinutes()
{

min++; //increment the value of min by 1

if (min > 59) //if min is greater than 59
{

min = 0; //set min to 0
incrementHours(); //increment hours

}
}

8

Classes and Objects | 441

Apago PDF Enhancer

public void incrementSeconds()
{

sec++; //increment the value of sec by 1

if (sec > 59) //if sec is greater than 59
{

sec = 0; //set sec to 0
incrementMinutes(); //increment minutes

}
}

From the definitions of the methods incrementMinutes and incrementSeconds, you
can see that a method of a class can call other methods of the class.

The method equals has the following definition:

public boolean equals(Clock otherClock)
{

return (hr == otherClock.hr
&& min == otherClock.min
&& sec == otherClock.sec);

}

Let’s see how the method equals works.

Suppose that myClock and yourClock are as shown in Figure 8-9.

Consider the following statement:

if (myClock.equals(yourClock))
.
.
.

In the expression:

myClock.equals(yourClock)

myClock accesses the method equals. The value of the parameter yourClock is passed
to the formal parameter otherClock, as shown in Figure 8-10.

hr 12

min 27

sec 15

yourClockmyClock

hr 12

min 35

sec 48

FIGURE 8-9 Objects myClock and yourClock

442 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

Note that otherClock and yourClock refer to the same object. The instance variables
hr, min, and sec of the object otherClock have the values 12, 27, and 15, respectively.
In other words, when the body of the method equals executes, the value of
otherClock.hr is 12, the value of otherClock.min is 27, and the value of
otherClock.sec is 15. The method equals is a member of myClock. When the
method equals executes, the variables hr, min, and sec in the body of the method
equals are the instance variables of the object myClock. Therefore, the instance variable
hr of the object myClock is compared with otherClock.hr, the instance variable min
of the object myClock is compared with otherClock.min, and the instance variable sec

of the object myClock is compared with otherClock.sec.

Once again, in the expression:

myClock.equals(yourClock)

the method equals is invoked by myClock and compares the object myClock with the
object yourClock. It follows that the method equals needs only one parameter.

Let us again take a look at the definition of the method equals. Notice that within the
definition of this method, the object otherClock accesses the data members hr, min,
and sec. However, these data members are private. So is there any violation? The
answer is no. The method equals is a member of the class Clock and hr, min, and
sec are the data members. Moreover, otherClock is an object of the class Clock.
Therefore, the object otherClock can access its private data members within the
definition of the method equals. The same is true for any method of a class.

That is, in general, when you write the definition of a method, say, dummyMethod, of a
class, say, DummyClass, and the method uses an object, dummyObject of the class
DummyClass, then within the definition of dummyMethod the object dummyObject can
access its private data members (in fact, any private member of the class).

The method makeCopy copies the instance variables of its parameter, otherClock, into
the corresponding instance variables of the object referenced by the variable using this
method. Its definition is:

hr 12

min 27

sec 15

yourClockmyClock

hr 12

min 35

sec 48

otherClock

equals

FIGURE 8-10 Object myClock and parameter otherClock

Classes and Objects | 443

Apago PDF Enhancer

public void makeCopy(Clock otherClock)
{

hr = otherClock.hr;
min = otherClock.min;
sec = otherClock.sec;

}

Consider the following statement:

myClock.makeCopy(yourClock);

In this statement, the method makeCopy is invoked by myClock. The three instance
variables hr, min, and sec in the body of the method makeCopy are the instance
variables of the object myClock. The variable yourClock is passed as a parameter to
makeCopy. Therefore, yourClock and otherClock refer to the same object,
which is the object yourClock. Thus, after the preceding statement executes, the
instance variables of the object yourClock are copied into the corresponding instance
variables of the object myClock. (Note that as in the case of the method equals, the
parameter otherClock can directly access the private data members of the object it
points to.)

The method getCopy creates a copy of an object’s hr, min, and sec and returns the
address of the copy of the object. That is, the method getCopy creates a new Clock
object, initializes the instance variables of the object, and returns the address of the object
created. The definition of the method getCopy is:

public Clock getCopy()
{

Clock temp = new Clock(); //Line 1

temp.hr = hr; //Line 2
temp.min = min; //Line 3
temp.sec = sec; //Line 4

return temp; //Line 5
}

The following illustrates how the method getCopy works. Suppose that yourClock is as
shown in Figure 8-11.

hr 4

min 18

sec 39

yourClock

FIGURE 8-11 Object yourClock

444 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

Consider the following statement:

myClock = yourClock.getCopy(); //Line A

In this statement, because the method getCopy is invoked by yourClock, the three
variables hr, min, and sec in the body of the method getCopy are the instance variables
of the object yourClock. The body of the method getCopy executes as follows. The
statement in Line 1 creates the Clock object temp. The statements in Lines 2 through 4
copy the instance variables of the object yourClock into the corresponding instance
variables of temp. In other words, the object referenced by temp is a copy of the object
yourClock (see Figure 8-12).

The statement in Line 5 returns the value of temp, which is the address of the object
holding a copy of the data. The value returned by the method getCopy is copied into
myClock. Therefore, after the statement in Line A executes, myClock and yourClock

are as shown in Figure 8-13.

Note that as in the case of the methods equals and makeCopy, the reference variable
temp—in the definition of the method getCopy—can directly access the private
data members of the object it points to because getCopy is a method of the class
Clock.

8

hr 4

min 18

sec 39

yourClocktemp

hr 4

min 18

sec 39

FIGURE 8-12 Objects temp and yourClock

hr 4

min 18

sec 39

yourClock

hr 4

min 18

sec 39

myClock

FIGURE 8-13 Objects myClock and yourClock

Classes and Objects | 445

Apago PDF Enhancer

The definition of the method getCopy can also be written as:

public Clock getCopy()
{

Clock temp = new Clock(hr, min, sec);

return temp;
}

This definition of the method getCopy uses the constructor with parameters, described

below, to initialize the instance variables of the object temp.

Next, we give the definitions of the constructors. The default constructor initializes each
instance variable to 0. Its definition is:

public Clock()
{

hr = 0;
min = 0;
sec = 0;

}

You can also write the definition of the default constructor using the method setTime as
follows:

public Clock()
{

setTime(0, 0, 0);
}

The definition of the constructor with parameters is the same as the definition of the
method setTime. It initializes the instance variables to the values specified by the user. Its
definition is:

public Clock(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

446 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

As in the case of the default constructor, you can write the definition of the constructor
with parameters using the method setTime as follows:

public Clock(int hours, int minutes, int seconds)
{

setTime(hours, minutes, seconds);
}

This definition of the constructor with parameters makes debugging easier, because only
the code for the method setTime needs to be checked.

DEFINITION OF THE Class Clock

Now that we have defined the methods of the class Clock, we can give the complete
definition of the class Clock. Before the definition of a method, we include comments
specifying the preconditions and/or postconditions.

Precondition: A statement specifying the condition(s) that must be true before the
function is called.

Postcondition: A statement specifying what is true after the function call is completed.

The definition of the class Clock is:

public class Clock
{

private int hr; //store hours
private int min; //store minutes
private int sec; //store seconds

//Default constructor
//Postcondition: hr = 0; min = 0; sec = 0

public Clock()
{

setTime(0, 0, 0);
}

//Constructor with parameters, to set the time
//The time is set according to the parameters.
//Postcondition: hr = hours; min = minutes;
// sec = seconds

public Clock(int hours, int minutes, int seconds)
{

setTime(hours, minutes, seconds);
}

//Method to set the time
//The time is set according to the parameters.
//Postcondition: hr = hours; min = minutes;
// sec = seconds

8

Classes and Objects | 447

Apago PDF Enhancer

public void setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

//Method to return the hours
//Postcondition: the value of hr is returned

public int getHours()
{

return hr;
}

//Method to return the minutes
//Postcondition: the value of min is returned

public int getMinutes()
{

return min;
}

//Method to return the seconds
//Postcondition: the value of sec is returned

public int getSeconds()
{

return sec;
}

//Method to print the time
//Postcondition: Time is printed in the form hh:mm:ss

public void printTime()
{

if (hr < 10)
System.out.print("0");

System.out.print(hr + ":");

if (min < 10)
System.out.print("0");

System.out.print(min + ":");

448 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

if (sec < 10)
System.out.print("0");

System.out.print(sec);
}

//Method to increment the time by one second
//Postcondition: The time is incremented by one second
//If the before-increment time is 23:59:59, the time
//is reset to 00:00:00

public void incrementSeconds()
{

sec++;

if (sec > 59)
{

sec = 0;
incrementMinutes(); //increment minutes

}
}

//Method to increment the time by one minute
//Postcondition: The time is incremented by one minute
//If the before-increment time is 23:59:53, the time
//is reset to 00:00:53

public void incrementMinutes()
{

min++;

if (min > 59)
{

min = 0;
incrementHours(); //increment hours

}
}

//Method to increment the time by one hour
//Postcondition: The time is incremented by one hour
//If the before-increment time is 23:45:53, the time
//is reset to 00:45:53

public void incrementHours()
{

hr++;

if (hr > 23)
hr = 0;

}

//Method to compare two times
//Postcondition: Returns true if this time is equal to
// otherClock; otherwise returns false

public boolean equals(Clock otherClock)

8

Classes and Objects | 449

Apago PDF Enhancer

{
return (hr == otherClock.hr

&& min == otherClock.min
&& sec == otherClock.sec);

}

//Method to copy time
//Postcondition: The instance variables of otherClock
// copied into the corresponding data
// are members of this time.
// hr = otherClock.hr;
// min = otherClock.min;
// sec = otherClock.sec;

public void makeCopy(Clock otherClock)
{

hr = otherClock.hr;
min = otherClock.min;
sec = otherClock.sec;

}

//Method to return a copy of time
//Postcondition: A copy of the object is created and
// a reference of the copy is returned

public Clock getCopy()
{

Clock temp = new Clock();

temp.hr = hr;
temp.min = min;
temp.sec = sec;

return temp;
}

}

In a class definition, it is a common practice to list all the instance variables, named constants,

other datamembers, or variable declarations first, then the constructors, and then themethods.

Once a class is properly defined and implemented, it can be used in a program. A program
or software that uses and manipulates the objects of a class is called a client of that class.

EXAMPLE 8-2

//Program to test various operations of the class Clock

import java.util.*;

public class TestProgClock

450 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

{
static Scanner console = new Scanner(System.in);

public static void main(String[] args)
{

Clock myClock = new Clock(5, 4, 30); //Line 1
Clock yourClock = new Clock(); //Line 2

int hours; //Line 3
int minutes; //Line 4
int seconds; //Line 5

System.out.print("Line 6: myClock: "); //Line 6
myClock.printTime(); //Line 7
System.out.println(); //Line 8
System.out.print("Line 9: yourClock: "); //Line 9
yourClock.printTime(); //Line 10
System.out.println(); //Line 11

yourClock.setTime(5, 45, 16); //Line 12

System.out.print("Line 13: After setting "
+ "the time - yourClock: "); //Line 13

yourClock.printTime(); //Line 14
System.out.println(); //Line 15

if (myClock.equals(yourClock)) //Line 16
System.out.println("Line 17: Both the "

+ "times are equal."); //Line 17
else //Line 18

System.out.println("Line 19: The two "
+ "times are not "
+ "equal."); //Line 19

System.out.print("Line 20: Enter hours, "
+ "minutes, and seconds: "); //Line 20

hours = console.nextInt(); //Line 21
minutes = console.nextInt(); //Line 22
seconds = console.nextInt(); //Line 23
System.out.println(); //Line 24

myClock.setTime(hours, minutes, seconds); //Line 25

System.out.print("Line 26: New time of "
+ "myClock: "); //Line 26

myClock.printTime(); //Line 27
System.out.println(); //Line 28

myClock.incrementSeconds(); //Line 29

System.out.print("Line 30: After "
+ "incrementing the time by "
+ "one second, myClock: "); //Line 30

Classes and Objects | 451

Apago PDF Enhancer

myClock.printTime(); //Line 31
System.out.println(); //Line 32

yourClock.makeCopy(myClock); //Line 33

System.out.print("Line 34: After copying "
+ "myClock into yourClock, "
+ "yourClock: "); //Line 34

yourClock.printTime(); //Line 35
System.out.println(); //Line 36

}//end main
}

Sample Run: (In this sample run, the user input is shaded.)

Line 6: myClock: 05:04:30
Line 9: yourClock: 00:00:00
Line 13: After setting the time - yourClock: 05:45:16
Line 19: The two times are not equal.
Line 20: Enter hours, minutes, and seconds: 11 22 59

Line 26: New time of myClock: 11:22:59
Line 30: After incrementing the time by one second, myClock: 11:23:00
Line 34: After copying myClock into yourClock, yourClock: 11:23:00

A walk-through of the preceding program is left as an exercise for you.

Classes and the Method toString
Suppose that x is an int variable and the value of x is 25. The statement:

System.out.println(x);

outputs:

25

However, the output of the statement:

System.out.println(myClock);

is:

Clock@11b86e7

which looks strange. (Note that when you execute a similar statement, you are likely to
get a different but similar output.) This is because whenever you create a class, the
Java system provides the method toString to that class. The method toString is
used to convert an object to a String object. When an object reference is provided as a
parameter to the methods print, println, and printf, the toString method is
called.

452 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

The default definition of the method toString creates a string that is the name of the
object’s class, followed by the hash code of the object. For example, in the preceding
statement, Clock is the name of the object myClock’s class and the hash code for the
object referenced by myClock is @11b86e7.

The method toString is a public value-returning method. It does not take any parameters
and returns the address of a String object. The heading of the method toString is:

public String toString()

You can override the default definition of the method toString to convert an object to a
desired string. Suppose that for the objects of the class Clock you want the method
toString to create the string hh:mm:ss—the string consists of the object’s hour, minutes,
seconds, and the colons as shown. The string created by the method toString is the same
as the string output by the method printTime of the class Clock. This is easily
accomplished by providing the following definition of the method toString:

public String toString()
{

String str = "";

if (hr < 10)
str = "0";

str = str + hr + ":";

if (min < 10)
str = str + "0" ;

str = str + min + ":";

if (sec < 10)
str = str + "0";

str = str + sec;

return str;
}

In the preceding code, str is a String variable used to create the required string.

The preceding definition of the method toString must be included in the class
Clock. In fact, after including the method toString in the class Clock, we can
remove the method printTime. If the values of the instance variables hr, min, and sec

of myClock are 8, 25, and 56, respectively, then the output of the statement:

System.out.println(myClock)

is:

08:25:56

You can see that the method toString is useful for outputting the values of the instance
variables. Note that the method toString only returns the (formatted) string; the methods
print, println, or printf output the string.

8

Classes and the Method toString | 453

Apago PDF Enhancer

EXAMPLE 8-3

In this example, we give the complete definition of the class Circle, which was briefly
discussed in the beginning of this chapter.

public class Circle
{

private double radius;

//Default constructor
//Sets the radius to 0

Circle()
{

radius = 0;
}

//Constructor with a parameter
//Sets the radius to the value specified by the parameter r.

Circle(double r)
{

radius = r;
}

//Method to set the radius of the circle.
//Sets the radius to the value specified by the parameter r.

public void setRadius(double r)
{

radius = r;
}

//Method to return the radius of the circle.
//Returns the radius of the circle.

public double getRadius()
{

return radius;
}

//Method to compute and return the area of the circle.
//Computes and returns the area of the circle.

public double area()
{

return Math.PI * Math.PI * radius;
}

//Method to compute and return the perimeter of the circle.
//Computes and returns the area of the circle.

public double perimeter()
{

return 2 * Math.PI * radius;
}

//Method to return the radius, area, perimeter of the circle
//as a string.

454 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

public String toString()
{

return String.format("Radius = %.2f, Perimeter = %.2f"
+ ", Area = %.2f%n", radius, perimeter(),
area());

}
}

We leave the UML class diagram of the class Circle as an exercise for you.

The following program shows how to use the class Circle in a program.

// Program to test various operations of the class Circle.

import java.util.*; //Line 1

public class TestProgCircle //Line 2
{ //Line 3

static Scanner console = new Scanner(System.in); //Line 4

public static void main(String[] args) //Line 5
{ //Line 6

Circle firstCircle = new Circle(); //Line 7
Circle secondCircle = new Circle(12); //Line 8

double radius; //Line 9

System.out.println("Line 10: firstCircle: "
+ firstCircle); //Line 10

System.out.println("Line 11: secondCircle: "
+ secondCircle); //Line 11

System.out.print("Line 12: Enter the radius: "); //Line 12
radius = console.nextDouble(); //Line 13
System.out.println(); //Line 14

firstCircle.setRadius(radius); //Line 15

System.out.println("Line 16: firstCircle: "
+ firstCircle); //Line 16

if (firstCircle.getRadius()
> secondCircle.getRadius()) //Line 17

System.out.println("Line 18: The radius of "
+ "the first circle is greater than "
+ "the radius of the second circle. "); //Line 18

else if (firstCircle.getRadius()
< secondCircle.getRadius()) //Line 19

System.out.println("Line 20: The radius of "
+ "the first circle is less than the "
+ "radius of the second circle. "); //Line 20

8

Classes and the Method toString | 455

Apago PDF Enhancer

else //Line 21
System.out.println("Line 22: The radius of "

+ "both the circles are the same."); //Line 22
}//end main //Line 23

} //Line 24

Sample Run: (In this sample run, the user input is shaded.)

Line 10: firstCircle: Radius = 0.00, Perimeter = 0.00, Area = 0.00

Line 11: secondCircle: Radius = 12.00, Perimeter = 75.40, Area = 118.44

Line 12: Enter the radius: 10

Line 16: firstCircle: Radius = 10.00, Perimeter = 62.83, Area = 98.70

Line 20: The radius of the first circle is less than the radius of the
second circle.

The preceding program works as follows. The statement in Line 7 creates the object
firstCircle and using the default constructor sets the radius to 0. The statement in
Line 8 creates the object secondCircle and sets the radius to 12. The statement in Line
9 declares the double variable radius. The statement in Line 10 outputs the radius, area,
and perimeter of the firstCircle. Similarly, the statement in Line 11 outputs the
radius, area, and perimeter of the secondCircle The statement in Line 12 prompts the
user to enter the value of radius. The statement in Line 13 stores the value entered by
the user in the variable radius. The statement in Line 15 uses the value of radius to set
the radius of firstCircle. The statement in Line 16 outputs the radius, area, and
perimeter of the firstCircle. The statements in Lines 17 to 23 compare the radius of
firstCircle and secondCircle and output the appropriate result.

EXAMPLE 8-4

In Example 7-3, the method rollDice rolls a pair of dice until the sum of the numbers
rolled is a given number and returns the number of times the dice are rolled to get the
desired sum. In fact, we can design a class that implements the basic properties of a die.
Consider the definition of the following class RollDie.

public class RollDie
{

private int num;

//Default constructor
//Sets the default number rolled by a die to 1

RollDie()
{

num = 1;
}

456 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

//Method to roll a die.
//This method uses a random number generator to randomly
//generate a number between 1 and 6, and stores the number
//in the instance variable num and returns the number.

public int roll()
{

num = (int) (Math.random() * 6) + 1;

return num;
}

//Method to return the number on the top face of the die.
//Returns the value of the instance variable num.

public int getNum()
{

return num;
}

//Returns the value of the instance variable num as a string.
public String toString()
{

return "" + num;
}

}

We leave the UML class diagram of the class RollDie as an exercise for you.

The following program shows how to use the class RollDie in a program.

// Program to test various operations of the class RollDie.

import java.util.*; //Line 1

public class TestProgRollDie //Line 2
{ //Line 3

static Scanner console = new Scanner(System.in); //Line 4

public static void main(String[] args) //Line 5
{ //Line 6

RollDie die1 = new RollDie(); //Line 7
RollDie die2 = new RollDie(); //Line 8

System.out.println("Line 9: die1: " + die1); //Line 9

System.out.println("Line 10: die2: " + die2); //Line 10

System.out.println("Line 11: After rolling "
+ "die1: " + die1.roll()); //Line 11

System.out.println("Line 12: After rolling "
+ "die2: " + die2.roll()); //Line 12

System.out.println("Line 13: Sum of the "
+ "numbers rolled by the dice is: "
+ (die1.getNum() + die2.getNum())); //Line 13

Classes and the Method toString | 457

Apago PDF Enhancer

System.out.println("Line 14: After again rolling "
+ "the sum of the numbers rolled is: "
+ (die1.roll() + die2.roll())); //Line 14

}//end main //Line 15
} //Line 16

Sample Run:

Line 9: die1: 1
Line 10: die2: 1
Line 11: After rolling die1: 5
Line 12: After rolling die2: 3
Line 13: Sum of the numbers rolled by the dice is: 8
Line 14: After again rolling the sum of the numbers rolled is: 4

The preceding program works as follows. The statements in Lines 7 and 8 create the
objects die1 and die2, and using the default constructor set both the dice to 1. The
statements in Lines 9 and 10 output the number of both the dice. The statement in Line
11 rolls die1 and outputs the number rolled. Similarly, the statement in Line 12 rolls
die2 and outputs the number rolled. The statement in Line 13 outputs the sum of the
numbers rolled by die1 and die2. The statement in Line 14 again rolls both the dice and
outputs the sum of the numbers rolled.

Copy Constructor
Suppose that you have the following statement:

Clock myClock = new Clock(8, 45, 22); //Line 1

You can use the object myClock to declare and instantiate another Clock object.
Consider the following statement:

Clock aClock = new Clock(myClock); //Line 2

This statement declares aClock to be a reference variable of type Clock, instantiates the
object aClock, and initializes the instance variables of the object aClock using the values
of the corresponding instance variables of the object myClock. However, to successfully
execute the statement in Line 2, you need to include a special constructor, called a copy
constructor, in the class Clock. The copy constructor executes when an object is
instantiated and initialized using an existing object.

The syntax of the heading of the copy constructor is:

public ClassName(ClassName otherObject)

For example, the heading of the copy constructor for the class Clock is:

public Clock(Clock otherClock)

458 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

The definition of the copy constructor for the class Clock is:

public Clock(Clock otherClock)
{

hr = otherClock.hr;
min = otherClock.min;
sec = otherClock.sec;

}

If you include this definition of the copy constructor in the class Clock, then the
statement in Line 2 declares aClock to be a reference variable of type Clock, instantiates
the object aClock, and initializes the instance variables of the object aClock using the
values of the instance variables of the object myClock.

The definition of the copy constructor of the class Clock can also be written as:

public Clock(Clock otherClock)
{

setTime(otherClock.hr, otherClock.min, otherClock.sec);
}

The copy constructor is useful and will be included in most of the classes.

Static Members of a Class
In Chapter 7, we described the classes Math and Character. In Example 7-1 (of
Chapter 7), we used several methods of the classes Math and Character; however, we
did not need to create any objects to use these methods.We simply used the import statement:

import static java.lang.Math.*;

and then called the method with an appropriate actual parameter list. For example, to use
the method pow of the class Math, we used expressions such as:

pow(5, 3)

Recall from Chapter 7 that if you are using versions of Java lower than Java 5.0 or you do
not include the preceding import statement, then you call the method pow as follows:

Math.pow(5, 3)

That is, we can simply call the method using the name of the class and the dot operator.

We cannot use the same approach with the class Clock. Although the methods of the
class Math are public, they also are defined using the modifier static. For example,
the heading of the method pow of the class Math is:

public static double pow(double base, double exponent)

The modifier static in the heading specifies that the method can be invoked by using
the name of the class. Similarly, if a data member of a class is declared using the
modifier static, it can be accessed by using the name of the class.

Static Members of a Class | 459

Apago PDF Enhancer

The following example clarifies the effect of the modifier static.

EXAMPLE 8-5

Consider the following definition of the class Illustrate:

public class Illustrate
{

private int x;
private static int y;
public static int count;

//Default constructor
//Postcondition: x = 0;

public Illustrate()
{

x = 0;
}

//Constructor with parameters
//Postcondition: x = a;

public Illustrate(int a)
{

x = a;
}

//Method to set x.
//Postcondition: x = a;

void setX(int a)
{

x = a;
}

//Method to return the values of the instance
//and static variables as a string
//The string returned is used by the methods
//print, println, or printf to print the values
//of the instance and static variables.
//Postcondition: The values of x, y, and count
//are returned as a string.

public String toString()
{

return("x = " + x + ", y = " + y
+ ", count = " + count);

}

//Method to increment the value of the private
//static member y
//Postcondition: y is incremented by 1.

460 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

public static void incrementY()
{

y++;
}

}

Suppose that you have the following declaration:

Illustrate illusObject = new Illustrate();

The reference variable illusObject can access any public member of the class
Illustrate.

The method incrementY is static and public, so the following statement is legal:

Illustrate.incrementY();

Similarly, because the data member count is static and public, the following state-
ment is legal:

Illustrate.count++;

In essence, public staticmembers of a class can be accessed either by an object, that is, by
using a reference variable of the class type, or using the class name and the dot operator.

static Variables (Data Members) of a Class
Suppose that you have a class, say, MyClass, with data members (static and non-
static). When you instantiate the objects of type MyClass, only the non-static data
members of the class MyClass become the data members of each object. What about
the memory for the static data members of MyClass? For each static data member
of the class, Java allocates memory space only once. All MyClass objects refer to the
same memory space. In fact, static data members of a class exist even when no object
of the class type is instantiated. Moreover, static variables are initialized to their
default values. You can access the public static data members outside the class, as
explained in the previous section.

The following example further clarifies how memory space is allocated for static and
non-static data members of a class.

Suppose that you have the class Illustrate, as given in Example 8-5. Then, memory
space exists for the static data members y and count.

Consider the following statements:

Illustrate illusObject1 = new Illustrate(3); //Line 1
Illustrate illusObject2 = new Illustrate(5); //Line 2

The statements in Lines 1 and 2 declare illusObject1 and illusObject2 to be
reference variables of type Illustrate and instantiate these objects (see Figure 8-14).

8

Static Members of a Class | 461

Apago PDF Enhancer

Now consider the following statement:

Illustrate.incrementY();
Illustrate.count++;

After these statements execute, the objects and static members are as shown in Figure 8-15.

The output of the statement:

System.out.println(illusObject1); //Line 3

is:

x = 3, y = 1, count = 1

Similarly, the output of the statement:

System.out.println(illusObject2); //Line 4

is:

x = 5, y = 1, count = 1

Now consider the statement:

Illustrate.count++;

y 0

count 0

illusObject2illusObject1 x 5x 3

FIGURE 8-14 illusObject1 and illusObject2

illusObject2illusObject1

y 1

count 1

x 5x 3

FIGURE 8-15 illusObject1 and illusObject2 after the statements Illustrate.
incrementY(); and Illustrate.count++; execute

462 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

After this statement executes, the objects and static members are as shown in Figure 8-16.

The output of the statements:

System.out.println(illusObject1);
System.out.println(illusObject2);

is:

x = 3, y = 1, count = 2
x = 5, y = 1, count = 2

The program in Example 8-6 further illustrates how static members of a class work.

EXAMPLE 8-6

public class StaticMembers
{

public static void main(String[] args)
{

Illustrate illusObject1 = new Illustrate(3); //Line 1
Illustrate illusObject2 = new Illustrate(5); //Line 2

Illustrate.incrementY(); //Line 3
Illustrate.count++; //Line 4

System.out.println("Line 5: illusObject1: "
+ illusObject1); //Line 5

System.out.println("Line 6: illusObject2: "
+ illusObject2); //Line 6

System.out.println("Line 7: ***Increment y "
+ "using illusObject1***"); //Line 7

illusObject1.incrementY(); //Line 8

illusObject1.setX(8); //Line 9

System.out.println("Line 10: illusObject1: "
+ illusObject1); //Line 10

illusObject2illusObject1

y 1

count 2

x 5x 3

FIGURE 8-16 illusObject1 and illusObject2 after the statement Illustrate.count++;
executes

Static Members of a Class | 463

Apago PDF Enhancer

System.out.println("Line 11: illusObject2: "
+ illusObject2); //Line 11

System.out.println("Line 12: ***Increment y "
+ "using illusObject2***"); //Line 12

illusObject2.incrementY(); //Line 13

illusObject2.setX(23); //Line 14

System.out.println("Line 15: illusObject1: "
+ illusObject1); //Line 15

System.out.println("Line 16: illusObject2: "
+ illusObject2); //Line 16

}
}

Sample Run:

Line 5: illusObject1: x = 3, y = 1, count = 1
Line 6: illusObject2: x = 5, y = 1, count = 1
Line 7: ***Increment y using illusObject1***
Line 10: illusObject1: x = 8, y = 2, count = 1
Line 11: illusObject2: x = 5, y = 2, count = 1
Line 12: ***Increment y using illusObject2***
Line 15: illusObject1: x = 8, y = 3, count = 1
Line 16: illusObject2: x = 23, y = 3, count = 1

The preceding program works as follows: The static data members y and count are
initialized to 0. The statements in Lines 1 and 2 create the Illustrate objects
illusObject1 and illusObject2. The instance variable x of illusObject1 is initi-
alized to 3; the instance variable x of illusObject2 is initialized to 5.

The statement in Line 3 uses the name of the class Illustrate and the method
incrementY to increment y. Because count is a public static member of the class
Illustrate, the statement in Line 4 uses the name of the class Illustrate to
directly access count, and increments it by 1. The statements in Lines 5 and 6 output
the data stored in the objects illusObject1 and illusObject2. Note that the value of
y for both objects is the same. Similarly, the value of count for both objects is the same.

The statement in Line 7 is an output statement. The statement in Line 8 uses the object
illusObject1 and the method incrementY to increment y. The statement in Line 9 sets
the value of the instance variable x of illusObject1 to 8. Lines 10 and 11 output the data
stored in the objects illusObject1 and illusObject2. Note that the value of y for both
objects is the same. Similarly, the value of count for both objects is the same. Moreover,
notice that the statement in Line 9 only changes the value of the instance variable x of
illusObject1 because x is not a static member of the class Illustrate.

The statement in Line 13 uses the object illusObject2 and the method incrementY to
increment y. The statement in Line 14 sets the value of the instance variable x of
illusObject2 to 23. Lines 15 and 16 output the data stored in the objects
illusObject1 and illusObject2. Notice that the value of y for both objects is the

464 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

same. Similarly, the value of count for both objects is the same. Note that the statement
in Line 14 only changes the value of the instance variable x of illusObject2 because x

is not a static member of the class Illustrate.

Here are some additional comments on static members of a class. As you have seen

in this section, a static method of a class does not need any object to be invoked.

It can be called using the name of the class and the dot operator. Therefore, a

static method cannot use anything that depends on a calling object. In other words,

in the definition of a static method, you cannot use a non-static data member or

a non-static method, unless there is a locally declared object that accesses the

non-static data member or the non-static method.

Finalizers
Like constructors, finalizers are also special types of methods. However, a finalizer is a
void method. A class can have only one finalizer, and the finalizer cannot have any
parameters. The name of the finalizer is finalize. The method finalize automatically
executes when the class object goes out of scope. A typical use of a finalizer is to free up
the memory allocated by the object of a class.

Accessor and Mutator Methods
Earlier in this chapter, we defined the terms mutator method and accessor method. This
section discusses these terms in detail and explains why such methods are needed to
construct a class.

Let us look at the methods of the class Clock. The method setTime sets the values
of the data members to the values specified by the user. In other words, it alters or
modifies the values of the instance variables. Similarly, the methods incrementHours,
incrementMinutes, and incrementSeconds also modify the instance variables. How-
ever, methods such as getHours, getMinutes, getSeconds, printTime, and equals

only access the values of the data members; they do not modify the data members. We can,
therefore, divide the methods of the class Clock into two categories: methods that
modify the data members, and methods that access, but do not modify, the data members.

This is typically true for any class. That is, almost every class has methods that only access
and do not modify the data members, called accessor methods, and methods that
modify the data members, called mutator methods.

Accessor Method: A method of a class that only accesses (that is, does not modify) the
value(s) of the data member(s).

Mutator Method: A method of a class that modifies the value(s) of one or more data
member(s).

Accessor and Mutator Methods | 465

Apago PDF Enhancer

Typically, the instance variables of a class are declared private so that the user of a class
does not have direct access to them. In general, every class has a set of accessor methods to
work with the instance variables. If the data members need to be modified, then the class
also has a set of mutator methods. Conventionally, mutator methods begin with the word
set and accessor methods begin with the word get. You might wonder why we need
both mutator and accessor methods when we can simply make the instance variables
public. However, look closely, for example, at the mutator method setTime of
the class Clock. Before setting the time, it validates the time. On the other hand, if
the instance variables are all public, then the user of the class can put any values in the
instance variables. Similarly, the accessor methods only return the value(s) of an instance
variable(s); that is, they do not modify the values. A well-designed class uses private
instance variables, accessor methods, and (if needed) mutator methods to implement the
OOD principle of encapsulation.

Example 8-7 further illustrates how classes are designed and implemented. The class
Person that we create in this example is very useful; we will use this class in subsequent
chapters.

EXAMPLE 8-7

Two common attributes of a person are the person’s first name and last name. The typical
operations on a person’s name are to set the name and print the name. The following
statements define a class with these properties (see Figure 8-17).

public class Person
{

private String firstName; //store the first name
private String lastName; //store the last name

//Default constructor;
//Initialize firstName and lastName to empty string.
//Postcondition: firstName = ""; lastName = "";

public Person()
{

firstName = "";
lastName = "";

}

//Constructor with parameters
//Set firstName and lastName according to the parameters.
//Postcondition: firstName = first; lastName = last;

public Person(String first, String last)
{

setName(first, last);
}

466 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

//Method to output the first name and last name
//in the form firstName lastName

public String toString()
{

return (firstName + " " + lastName);
}

//Method to set firstName and lastName according to
//the parameters
//Postcondition: firstName = first; lastName = last;

public void setName(String first, String last)
{

firstName = first;
lastName = last;

}

//Method to return the firstName
//Postcondition: the value of firstName is returned

public String getFirstName()
{

return firstName;
}

//Method to return the lastName
//Postcondition: the value of lastName is returned

public String getLastName()
{

return lastName;
}

}

8

Person

-firstName: String
-lastName: String

+Person()
+Person(String, String)
+toString(): String
+setName(String, String): void
+getFirstName(): String
+getLastName(): String

FIGURE 8-17 UML class diagram of the class Person

Accessor and Mutator Methods | 467

Apago PDF Enhancer

The following program tests the class Person:

public class TestProgPerson
{

public static void main(String[] args)
{

Person name = new Person(); //Line 1

Person emp = new Person("Donald", "Jackson"); //Line 2

System.out.println("Line 3: name: " + name); //Line 3

name.setName("Ashley", "Blair"); //Line 4
System.out.println("Line 5: name: " + name); //Line 5

System.out.println("Line 6: emp: " + emp); //Line 6

emp.setName("Sandy", "Smith"); //Line 7
System.out.println("Line 8: emp: " + emp); //Line 8

}//end main
}

Sample Run:

Line 3: name:
Line 5: name: Ashley Blair
Line 6: emp: Donald Jackson
Line 8: emp: Sandy Smith

Debugging—Designing a Class and Documenting
the Design
Some beginning programmers mistakenly assume that problem-solving is about coding. These
individuals either never become competent programmers, or they come to appreciate the fact
that design is a critical step that always precedes coding.By the timewe reach the designphase,we
already know what the problem is and we focus our attention on how to solve it. Good
programmers learn how to solve a problem completely before they write a single line of code.
The solution should be understood so thoroughly that, given only pencil, paper, and enough
time, the programmer could solve the problem without the use of a computer.

The design is not something that exists only in the programmer’s head. It is written down in
enough detail that another programmer with the same level of programming skill can take
the design and produce the Java code without having to do additional problem-solving.

Let’s review the approach we took in designing the class Clock. First we identified the
operations that the class needed to perform. We determined that each operation should
have its own method and identified the data members required by each of these opera-
tions. We determined the type and value, if any, produced and returned by each of these

468 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

operations. We determined which members should be private and which members
should be public, and wrote method headings for each member, each beginning with
the word public or private. Following the word public or private, we stated the
return type—except for the constructors, which never have a return type. Then we
provided the name of the method followed by parentheses. Any needed parameters, each
preceded by its type, were included between the parentheses.

Sometimes, the means by which a method achieves the intended objective is obvious, requiring
only a simple statement. Sometimes it takes a great deal of thought to discover the best means of
achieving the intended objective, occasionally requiring a more complex statement. Often
several means of achieving the objective are considered before one is selected. Determining how
to achieve the intended objective should be completed during the design phase, not the coding
phase. An algorithm describes the means for achieving the intended objective.

An algorithm can be described in many different ways. Algorithms are often described
using pseudocode. Pseudocode is a mixture of English, Java, and useful symbols, but usually
without regard for formal syntax. Whatever form is used to describe the algorithm, it
should be sufficiently clear so that a programmer can code the algorithm in Java without
having to make any further decisions about how to solve the problem.

The means by which each method achieves its objective is written down as part of the
design phase. At one extreme, only a single line is required. At the other extreme, a
complicated process with complicated formulas might need to be described. But, in all
cases, the means should be clear and complete.

Our design of the class Clock might look like the following:

public class Clock
{
// data members

private int hr;
private int min;
private int sec;

// methods

public Clock()
{

// set time to 0,0,0
}

public Clock(int hours, int minutes, int seconds)
{

// set time to according to the parameters
}

public void setTime(int hours, int minutes, int seconds)
{

// set time to according to the parameters

}

Debugging—Designing a Class and Documenting the Design | 469

Apago PDF Enhancer

public int getHours()
{

// return hr
}

public int getMinutes()
{

// return min
}

public int getSeconds()
{

//return sec
}

public void printTime()
{

// print hr:min:sec
}

public void incrementSeconds()
{

// increment sec by 1
}

public void incrementMinutes()
{

// increment min by 1
}

public void incrementHours()
{

// increment hr by 1
}

public boolean equals(Clock otherClock)
{

// compare this time with the time of otherClock
}

public void makeCopy(Clock otherClock)
{

// copy time of otherClock
}

public Clock getCopy()
{

// return a copy of this time
}

}

470 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

The current version of the class Clock can be coded directly from this design.

Avoid the temptation to skip the design phase. Even though the first programs you write
can be made to run by going directly to the coding phase, this approach works only for
very small programs. More importantly, it creates a bad habit, which is easy to form but
hard to live with—whereas good habits are hard to form but easy to live with. Experience
demonstrates consistently that the total time required to produce, debug, and maintain
a properly designed program is significantly less than the total time required to produce,
debug, and maintain a program with an incomplete design or with no design at all. In
fact, programs with incomplete designs, or no designs at all, often never achieve their
intended objectives.

Debugging—Design Walk-Throughs
In Chapter 2, you learned about using code walk-throughs to find and remove bugs from
programs. The same principles apply to design walk-throughs. Typically, a design walk-
through takes place as the design is being finalized and before any code is written.

Except for the syntactic bugs that show up in your program, many of the bugs that
you encounter in your programs creep in at design time. Sometimes an important
operation is omitted. Sometimes we fail to consider potential future use of the class,
and we make a class needlessly specialized. Sometimes too much is expected of a
single method, when instead two or more methods should be written to achieve the
intended objective. Sometimes not all the data members required by the method are
identified and provided. Sometimes the value to be produced and returned by the
method is characterized improperly. Sometimes the public or private status of
a member is determined incorrectly. For example, a public data member is seldom
if ever appropriate. All of these problems can be corrected at design time before a
single line of code is written.

Sometimes, in the interest of generality, programmers provide methods that are unlikely
to ever be used. This creates excess baggage that can make it difficult to design,
implement, test, and maintain programs. Occasionally data members are passed into a
method even though the method makes no use of them, or a method returns a value that
is never used. All of these excesses make programs more difficult to develop. As a
programmer, you should take steps to avoid them.

With a code walk-through, a programmer begins by trying to find and fix these problems
himself. The programmer should verify that each intended operation is represented by
one or more methods. He should verify that each method receives only the data members
needed to achieve its intended objective. The programmer should verify that any
intended value is returned by the method. He should also review the public or
private status of each member. Next, the programmer should think through the ranges
of data that could be passed to each method. By walking through it in his mind, he
verifies that, in every case, the method performs as intended with each variety of data that
could be passed to it.

8

Debugging—Designing a Class and Documenting the Design | 471

Apago PDF Enhancer

At this point, it may be prudent for the programmer to repeat the design walk-through
process with someone who is learning to design programs or who has learned to design
programs already. As always, the programmer should be sure that he has prepared his
design carefully before presenting it to someone else. In the process of doing so, he may
find and correct one or more bugs that he missed during his previous design review. As
the programmer explains his design, both he and his audience will have an opportunity to
look carefully and methodically at each aspect.

As before, avoid the temptation to shortchange the design phase by ‘‘cutting to the
chase.’’ Deficiencies encountered at design time are much easier to correct than defi-
ciencies encountered after coding has begun.

Reference this (Optional)
In this chapter, we defined the class Clock. Suppose that myClock is a reference
variable of type Clock. Suppose that the object myClock has been created. Consider
the following statements:

myClock.setTime(5, 6, 59); //Line 1
myClock.incrementSeconds(); //Line 2

The statement in Line 1 uses the method setTime to set the instance variables hr, min,
and sec of the object myClock to 5, 6, and 59, respectively. The statement in Line 2 uses
the method incrementSeconds to increment the time of the object myClock by one
second. The statement in Line 2 also results in a call to the method incrementMinutes
because, after incrementing the value of sec by 1, the value of sec becomes 60, which
then is reset to 0, and the method incrementMinutes is invoked.

How do you think Java makes sure that the statement in Line 1 sets the instance variables
of the object myClock and not of another Clock object? How does Java make sure that
when the method incrementSeconds calls the method incrementMinutes, the
method incrementMinutes increments the value of the instance variable min of the
object myClock and not of another Clock object?

The answer is that every object has access to a reference of itself. The name of this
reference is this. In Java, this is a reserved word.

Java implicitly uses the reference this to refer to both the instance variables and the
methods of a class. Recall that the definition of the method setTime is:

public void setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

472 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

In the method setTime, the statement:

hr = hours;

is, in fact, equivalent to the statement:

this.hr = hours;

In this statement, the reference this is used explicitly. You can explicitly use the
reference this and write the equivalent definition of the method setTime as follows:

public void setTime(int hr, int min, int sec)
{

if (0 <= hr && hr < 24)
this.hr = hr;

else
this.hr = 0;

if (0 <= min && min < 60)
this.min = min;

else
this.min = 0;

if (0 <= sec && sec < 60)
this.sec = sec;

else
this.sec = 0;

}

Notice that in the preceding definition of the method setTime, the name of the formal
parameters and the name of the instance variables are the same. In this definition of the
method setTime, the expression this.hr means the instance variable hr, not the formal
parameter hr, and so on. Because the code explicitly uses the reference this, the
compiler can distinguish between the instance variables and the formal parameters. Of
course, you could have kept the name of the formal parameters as before and still used the
reference this as shown in the code.

8

Reference this (Optional) | 473

Apago PDF Enhancer

Similarly, explicitly using the reference this, you can write the definition of the method
incrementSeconds as follows:

public void incrementSeconds()
{

this.sec++;

if (this.sec > 59)
{

this.sec = 0;
this.incrementMinutes(); //increment minutes

}
}

Cascaded Method Calls (Optional)
In addition to explicitly referring to the instance variables and methods of an object, the
reference this has another use—to implement cascaded method calls. We explain this
with the help of an example.

In Example 8-7, we designed the class Person to implement a person’s name in a
program. Here, we extend the definition of the class Person to individually set a
person’s first name and last name, and then return a reference to the object, using this.
The following code is the extended definition of the class Person. (The methods
setFirstName and setLastName are added to this definition of the class Person.)

public class Person
{

private String firstName; //store the first name
private String lastName; //store the last name

//Default constructor;
//Initialize firstName and lastName to empty string.
//Postcondition: firstName = ""; lastName = "";

public Person()
{

firstName = "";
lastName = "";

}

//Constructor with parameters
//Set firstName and lastName according to the parameters.
//Postcondition: firstName = first; lastName = last;

public Person(String first, String last)
{

setName(first, last);
}

474 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

//Method to return the first name and last name
//in the form firstName lastName

public String toString()
{

return (firstName + " " + lastName);
}

//Method to set firstName and lastName according to
//the parameters
//Postcondition: firstName = first; lastName = last;

public void setName(String first, String last)
{

firstName = first;
lastName = last;

}

//Method to set the last name
//Postcondition: lastName = last;
// After setting the last name, a reference
// of the object is returned.

public Person setLastName(String last)
{

lastName = last;

return this;
}

//Method to set the first name
//Postcondition: firstName = first;
// After setting the first name, a reference
// of the object is returned.

public Person setFirstName(String first)
{

firstName = first;

return this;
}

//Method to return the firstName
//Postcondition: the value of firstName is returned

public String getFirstName()
{

return firstName;
}

//Method to return the lastName
//Postcondition: the value of lastName is returned

public String getLastName()
{

return lastName;
}

}

8

Reference this (Optional) | 475

Apago PDF Enhancer

Consider the following method main:

public class CascadedMethodCalls
{

public static void main(String[] args)
{

Person student1 =
new Person("Angela", "Smith"); //Line 1

Person student2 = new Person(); //Line 2

Person student3 = new Person(); //Line 3
System.out.println("Line 4 -- Student 1: "

+ student1); //Line 4

student2.setFirstName("Shelly").
setLastName("Malik"); //Line 5

System.out.println("Line 6 -- Student 2: "
+ student2); //Line 6

student3.setFirstName("Chelsea"); //Line 7

System.out.println("Line 8 -- Student 3: "
+ student3); //Line 8

student3.setLastName("Tomek"); //Line 9

System.out.println("Line 10 -- Student 3: "
+ student3); //Line 10

}
}

Sample Run:

Line 4 -- Student 1: Angela Smith
Line 6 -- Student 2: Shelly Malik
Line 8 -- Student 3: Chelsea
Line 10 -- Student 3: Chelsea Tomek

The statements in Lines 1, 2, and 3 declare the variables student1, student2, and
student3 and also instantiate the objects. The instance variables of the objects student2
and student3 are initialized to empty strings. The statement in Line 4 outputs the value
of student1. The statement in Line 5 works as follows. In the statement:

student2.setFirstName("Shelly").setLastName("Malik");

first the expression:

student2.setFirstName("Shelly")

476 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

is executed because the associativity of the dot operator is from left to right. This
expression sets the first name to "Shelly" and returns a reference to the object, which
is the object student2. Thus, the next expression executed is:

student2.setLastName("Malik")

which sets the last name of the object student2 to "Malik". The statement in Line 6
outputs the value of student2. The statement in Line 7 sets the first name of student3 to
"Chelsea", and the statement in Line 8 outputs student3. Notice the output in Line 8.
The output shows only the first name, not the last name, because we have not yet set the last
name of the object student3. The last name of the object student3 is still empty, which
was set by the statement in Line 3 when student3was declared. Next, the statement in Line
9 sets the last name of the object student3, and the statement in Line 10 outputs student3.

Inner Classes
The classes defined thus far in this chapter are said to have file scope, that is, they are
contained within a file, but not within another class. In Chapter 6, while designing the
class RectangleProgram, we defined the class CalculateButtonHandler to
handle an action event. The definition of the class CalculateButtonHandler is
contained within the class RectangleProgram. Classes that are defined within other
classes are called inner classes.

An inner class can be either a complete class definition, such as the class
CalculateButtonHandler, or an anonymous inner class definition. Anonymous classes
are classes with no name.

One of the main uses of inner classes is to handle events—as we did in Chapter 6. A full
discussion of inner classes is beyond the scope of this book. In this book, our main use
of inner classes is to handle events in a GUI program. For example, see the programming
example in Chapter 6 and the GUI part of the programming example in this chapter.

Abstract Data Types
To help you understand an abstract data type (ADT) and how it might be used, we’ll
provide an analogy. The following items seem unrelated:

• A deck of playing cards

• A set of index cards containing contact information

• Telephone numbers stored in your cellular phone

All three of these items share the following structural properties:

• Each one is a collection of elements.

• There is a first element.

8

Abstract Data Types | 477

Apago PDF Enhancer

• There is a second element, third element, and so on.

• There is a last element.

• Given an element other than the last element, there is a ‘‘next’’ element.

• Given an element other than the first element, there is a ‘‘previous’’
element.

• An element can be removed from the collection.

• An element can be added to the collection.

• A specified element can be located in the collection by systematically
going through the collection.

In your programs, you may want to keep a collection of various elements, such as
addresses, students, employees, departments, and projects. This structure commonly
appears in various applications, and it is worth studying in its own right. We call this
organization a list, which is an example of an ADT.

There is a data type called Vector (discussed in Chapter 9) with basic operations such as:

• Insert an item.

• Delete an item.

• Find an item.

You can use a Vector object to create an address book. You would not need to
write a program to insert an address, delete an address, or find an item in your
address book. Java also allows you to create your own abstract data types through
classes.

An ADT is an abstraction of a commonly appearing data structure, along with a set of
defined operations on the data structure.

Abstract data type (ADT): A data type that specifies the logical properties without
concern for the implementation details.

Historically, the concept of ADT in computer programming developed as a way of
abstracting the common data structure and the associated operations. Along the way,
ADT provided information hiding. That is, ADT hides the implementation details of
the operations and the data from the users of the ADT. Users can use the operations of an
ADT without knowing how the operation is implemented.

478 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

PROGRAMMING EXAMPLE: Candy Machine
A new candy machine is bought for the cafeteria and a program is needed to make
the machine function properly. The machine sells candies, chips, gum, and cookies.
In this programming example, we write a program to create a Java application
program for the candy machine so that it can be put into operation.

We implement this program in two ways. First, we show how to design a non-GUI
application program. Then, we show how to design an application program that will
create a GUI to make the candy machine operational.

The non-GUI application program should do the following:

1. Show the customer the different products sold by the candy
machine.

2. Let the customer make the selection.

3. Show the customer the cost of the item selected.

4. Accept the money from the customer.

5. Release the item.

Input: The item selection and the cost of the item

Output: The selected item

In the next section, we design the candy machine’s basic components, which are
required by either type of application program—GUI or non-GUI. The difference
between the two types is evident when we write the main program to put the candy
machine into operation.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

A candy machine has three main components: a built-in cash register, several
dispensers to hold and release the products, and the candy machine itself. Therefore,
we need to define a class to implement the cash register, a class to implement the
dispenser, and a class to implement the candy machine. First, we describe the classes
to implement the cash register and dispenser, and then we use these classes to describe
the candy machine.

Cash

Register

Let’s first discuss the properties of a cash register. The register has some cash on hand,
it accepts the amount from the customer, and if the amount entered is more than the
cost of the item, then—if possible—it returns the change. For simplicity, we assume
that the user enters the exact amount for the product. The cash register should also be
able to show the candy machine’s owner the amount of money in the register at any
given time. Let’s call the class implementing the cash register CashRegister.

Programming Example: Candy Machine | 479

Apago PDF Enhancer

Themembersof the class CashRegister are listedbelowand shown in Figure 8-18.

Instance

Variables

private int cashOnHand;

Constructors

and Methods

public CashRegister()
//Default constructor
//To set the cash in the register 500 cents
//Postcondition: cashOnHand = 500;

public CashRegister(int cashIn)
//Constructor with parameters
//Postcondition: cashOnHand = cashIn;

public int currentBalance()
//Method to show the current amount in the cash register
//Postcondition: The value of the instance variable
// cashOnHand is returned

public void acceptAmount(int amountIn)
//Method to receive the amount deposited by
//the customer and update the amount in the register
//Postcondition: cashOnHand = cashOnHand + amountIn

Next, we give the definitions of the methods to implement the operations of the
class CashRegister. The definitions of these methods are simple and easy to
follow.

The method currentBalance shows the current amount in the cash register. The
amount stored in the cash register is in cents. Its definition is:

public int currentBalance()
{

return cashOnHand;
}

CashRegister

-cashOnHand: int

+CashRegister()
+CashRegister(int)
+currentBalance(): int
+acceptAmount(int): void

FIGURE 8-18 UML class diagram of the class CashRegister

480 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

The method acceptAmount accepts the amount entered by the customer. It updates
the cash in the register by adding the amount entered by the customer to the previous
amount in the cash register. The definition of this method is:

public void acceptAmount(int amountIn)
{

cashOnHand = cashOnHand + amountIn;
}

The constructor with the parameter sets the value of the instance variable to the value
specified by the user. The value is passed as a parameter to the constructor. The
definition of the constructor with the parameter is:

public CashRegister(int cashIn)
{

if (cashIn >= 0)
cashOnHand = cashIn;

else
cashOnHand = 500;

}

Note that the definition of the constructor checks for valid values of the parameter
cashIn. If the value of cashIn is less than 0, the value assigned to the instance
variable cashOnHand is 500.

The default constructor sets the value of the instance variable cashOnHand to 500

cents. Its definition is:

public CashRegister()
{

cashOnHand = 500;
}

Now that we have the definitions of all the methods necessary to implement the
operations of the class CashRegister, we can give the definition of CashRegister.
Its definition is:

//class cashRegister

public class CashRegister
{

private int cashOnHand; //variable to store the cash
//in the register

//Default constructor to set the cash
//in the register to 500 cents
//Postcondition: cashOnHand = 500

public CashRegister()
{

cashOnHand = 500;
}

Programming Example: Candy Machine | 481

Apago PDF Enhancer

//Constructor with parameters to set the cash in
//the register to a specific amount
//Postcondition: cashOnHand = cashIn

public CashRegister(int cashIn)
{

if (cashIn >= 0)
cashOnHand = cashIn;

else
cashOnHand = 500;

}

//Method to show the current amount in the cash register
//Postcondition: The value of the instance variable
// cashOnHand is returned.

public int currentBalance()
{

return cashOnHand;
}

//Method to receive the amount deposited by
//the customer and update the amount in the register
//Postcondition: cashOnHand = cashOnHand + amountIn

public void acceptAmount(int amountIn)
{

cashOnHand = cashOnHand + amountIn;
}

}

Dispenser The dispenser releases the selected item if it is not empty. It should show the number
of items in the dispenser and the cost of the item. Let’s call the class implementing a
dispenser Dispenser. The members necessary to implement the class Dispenser

are listed next and shown in Figure 8-19.

Instance

Variables

private int numberOfItems; //variable to store the number of
//items in the dispenser

private int cost; //variable to store the cost of an item

Constructors

and Methods

public Dispenser()
//Default constructor to set the cost and number of
//items to the default values
//Postcondition: numberOfItems = 50; cost = 50;

public Dispenser(int setNoOfItems, int setCost)
//Constructor with parameters to set the cost and number
//of items in the dispenser specified by the user
//Postcondition: numberOfItems = setNoOfItems;
// cost = setCost;

482 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

public int getCount()
//Method to show the number of items in the dispenser
//Postcondition: The value of the instance variable
// numberOfItems is returned

public int getProductCost()
//Method to show the cost of the item
//Postcondition: The value of the instance
// variable cost is returned

public void makeSale()
//Method to reduce the number of items by 1
//Postcondition: numberOfItems = numberOfItems - 1;

Because the candy machine sells four types of items, we will create four objects of
type Dispenser. The statement:

Dispenser chips = new Dispenser(100, 65);

creates the object chips, sets the number of chip bags in this dispenser to 100, and
sets the cost of each chip bag to 65 cents (see Figure 8-20).

chips
numberOfItems 100

cost 65

FIGURE 8-20 The object chips

Dispenser

-numberOfItems: int
-cost: int

+Dispenser()
+Dispenser(int, int)
+getCount(): int
+getProductCost(): int
+makeSale(): void

FIGURE 8-19 UML class diagram of the class Dispenser

Programming Example: Candy Machine | 483

Apago PDF Enhancer

Next, we discuss the definitions of the methods to implement the operations of the
class Dispenser.

The method getCount returns the number of items of a particular product. Because
the number of items currently in the dispenser is stored in the instance variable
numberOfItems, the method getCount returns the value of the instance variable
numberOfItems. The definition of this method is:

public int getCount()
{

return numberOfItems;
}

The method getProductCost returns the cost of a product. Because the cost of a
product is stored in the instance variable cost, it returns the value of the instance
variable cost. The definition of this method is:

public int getProductCost()
{

return cost;
}

When a product is sold, the number of items in that dispenser is reduced by 1.
Therefore, the method makeSale reduces the number of items in the dispenser by 1.
That is, it decrements the value of the instance variable numberOfItems by 1. The
definition of this method is:

public void makeSale()
{

numberOfItems--;
}

The definition of the constructor checks for valid values of the parameters. If these
values are less than 0, the default values are assigned to the instance variables. The
definition of the constructor is:

//constructor with parameters
public Dispenser(int setNoOfItems, int setCost)
{

if (setNoOfItems >= 0)
numberOfItems = setNoOfItems;

else
numberOfItems = 50;

if (setCost >= 0)
cost = setCost;

else
cost = 50;

}

484 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

The default constructor assigns the default values to the instance variables:

public Dispenser()
{

numberOfItems = 50;
cost = 50;

}

The definition of the class Dispenser is:

//class Dispenser

public class Dispenser
{

private int numberOfItems; //variable to store the number of
//items in the dispenser

private int cost; //variable to store the cost of an item

//Default constructor to set the cost and number of
//items to the default values
//Postcondition: numberOfItems = 50; cost = 50;

public Dispenser()
{

numberOfItems = 50;
cost = 50;

}

//Constructor with parameters to set the cost and number
//of items in the dispenser specified by the user
//Postcondition: numberOfItems = setNoOfItems;
// cost = setCost;

public Dispenser(int setNoOfItems, int setCost)
{

if (setNoOfItems >= 0)
numberOfItems = setNoOfItems;

else
numberOfItems = 50;

if (setCost >= 0)
cost = setCost;

else
cost = 50;

}

//Method to show the number of items in the dispenser
//Postcondition: The value of the instance variable
// numberOfItems is returned.

public int getCount()
{

return numberOfItems;
}

Programming Example: Candy Machine | 485

Apago PDF Enhancer

//Method to show the cost of the item
//Postcondition: The value of the instance
// variable cost is returned.

public int getProductCost()
{

return cost;
}

//Method to reduce the number of items by 1
//Postcondition: numberOfItems = numberOfItems - 1

public void makeSale()
{

numberOfItems--;
}

}

Main Program When the program executes, it must do the following:

1. Show the different products sold by the candy machine.

2. Show how to select a particular product.

3. Show how to terminate the program.

Furthermore, these instructions must be displayed after processing each selection
(except when exiting the program), so that the user need not remember what to
do if he or she wants to buy additional items. Once the user makes the appropriate
selection, the candy machine must act accordingly. If the user opts to buy an available
product, the candy machine should show the cost of the product and ask the user to
deposit the money. If the money deposited is at least the cost of the item, the candy
machine should sell the item and display an appropriate message.

This discussion translates into the following algorithm:

1. Show the selection to the customer.

2. Get the selection.

3. If the selection is valid and the dispenser corresponding to the
selection is not empty, sell the product.

We divide this program into three functions—showSelection, sellProduct, and
main.

Method

showSelection
This method displays the necessary information to help the user select and buy a
product. Essentially, it contains the following output statements (we assume that the
candy machine sells four types of products):

*** Welcome to Shelly's Candy Shop ***"
To select an item, enter
1 for Candy
2 for Chips

486 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

3 for Gum
4 for Cookies
9 to exit

The definition of the function showSelection is:

public static void showSelection()
{

System.out.println("*** Welcome to Shelly's "
+ "Candy Shop ***");

System.out.println("To select an item, enter ");
System.out.println("1 for Candy");
System.out.println("2 for Chips");
System.out.println("3 for Gum");
System.out.println("4 for Cookies");
System.out.println("9 to exit");

}//end showSelection

Next, we describe the method sellProduct.

Method

sellProduct
This method attempts to sell a particular product selected by the customer. The
candy machine contains four dispensers, which correspond to the four products. The
first thing this method does is check whether the dispenser holding the product is
empty. If the dispenser is empty, the method informs the customer that this product
is sold out. If the dispenser is not empty, it tells the user to deposit the necessary
amount to buy the product. For simplicity, we assume that this program does not
return the extra money deposited by the customer. Therefore, the cash register is
updated by adding the money entered by the user.

From this discussion, it follows that the method sellProduct must have access to
the dispenser holding the product (to decrement the number of items in the dispenser
by 1 and to show the cost of the item) as well as access to the cash register (to update
the cash). Therefore, this method has two parameters: one corresponding to the
dispenser and the other corresponding to the cash register.

In pseudocode, the algorithm for this method is:

1. If the dispenser is not empty

a. Get the product cost.

b. Set the variable coinsRequired to the price of the product.

c. Set the variable coinsInserted to 0.

d. While coinsRequired is greater than 0:

i. Show and prompt the customer to enter the additional
amount.

ii. Calculate the total amount entered by the customer.

iii. Determine the amount needed.

Programming Example: Candy Machine | 487

Apago PDF Enhancer

e. Update the amount in the cash register.

f. Sell the product—that is, decrement the number of items in the
dispenser by 1.

g. Display an appropriate message.

2. If the dispenser is empty, tell the user that this product is sold out.

The definition of the method sellProduct is:

public static void sellProduct(Dispenser product,
CashRegister cRegister)

{
int price; //variable to hold the product price
int coinsInserted; //variable to hold the amount entered
int coinsRequired; //variable to show the extra amount

//needed

if (product.getCount() > 0) //Step 1
{

price = product.getProductCost(); //Step 1a
coinsRequired = price; //Step 1b
coinsInserted = 0; //Step 1c

while (coinsRequired > 0) //Step 1d
{

System.out.print("Please deposit "
+ coinsRequired
+ " cents: "); //Step 1d.i

coinsInserted = coinsInserted
+ console.nextInt(); //Step 1d.ii

coinsRequired = price
- coinsInserted; //Step 1d.iii

}

System.out.println();

cRegister.acceptAmount(coinsInserted); //Step 1e
product.makeSale(); //Step 1f

System.out.println("Collect your item "
+ "at the bottom and "
+ "enjoy.\n"); //Step 1g

}
else

System.out.println("Sorry this item "
+ "is sold out.\n"); //Step 2

}//end sellProduct

488 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

Method

main
The algorithm for the method main follows:

1. Create the cash register—that is, create and initialize a
CashRegister object.

2. Create four dispensers—that is, create and initialize four objects of
type Dispenser. For example, the statement:

Dispenser candy = new Dispenser(100, 50);

creates a dispenser object, candy, to hold the candies. The number
of items in the dispenser is 100, and the cost of an item is 50 cents.

3. Declare additional variables as necessary.

4. Show the selection; call the method showSelection.

5. Get the selection.

6. While not done (a selection of 9 exits the program):

a. Sell the product; call the method sellProduct.

b. Show the selection; call the method showSelection.

c. Get the selection.

The definition of the method main follows:

public static void main(String[] args)
{

CashRegister cashRegister = new CashRegister(); //Step 1
Dispenser candy = new Dispenser(100, 50); //Step 2
Dispenser chips = new Dispenser(100, 65); //Step 2
Dispenser gum = new Dispenser(75, 45); //Step 2
Dispenser cookies = new Dispenser(100, 85); //Step 2

int choice; //variable to hold the selection //Step 3

showSelection(); //Step 4
choice = console.nextInt(); //Step 5

while (choice != 9) //Step 6
{

switch (choice) //Step 6a
{
case 1:

sellProduct(candy, cashRegister);
break;

case 2:
sellProduct(chips, cashRegister);
break;

Programming Example: Candy Machine | 489

Apago PDF Enhancer

case 3:
sellProduct(gum, cashRegister);
break;

case 4:
sellProduct(cookies, cashRegister);
break;

default:
System.out.println("Invalid Selection");

}//end switch

showSelection(); //Step 6b
choice = console.nextInt(); //Step 6c

}//end while
}//end main

MAIN PROGRAM LISTING

//Program: Candy Machine

import java.util.*;

public class CandyMachine
{

static Scanner console = new Scanner(System.in);

//Place the definition of the method main as given above here.

//Place the definition of the method showSelection as
//given above here.

//Place the definition of the method sellProduct as
//given above here.

}

Sample Run: (In this sample run, the user input is shaded.)

*** Welcome to Shelly's Candy Shop ***
To select an item, enter
1 for Candy
2 for Chips
3 for Gum
4 for Cookies
9 to exit
1
Please deposit 50 cents: 50

Collect your item at the bottom and enjoy.

490 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

*** Welcome to Shelly's Candy Shop ***
To select an item, enter
1 for Candy
2 for Chips
3 for Gum
4 for Cookies
9 to exit
3
Please deposit 45 cents: 45

Collect your item at the bottom and enjoy.

*** Welcome to Shelly's Candy Shop ***
To select an item, enter
1 for Candy
2 for Chips
3 for Gum
4 for Cookies
9 to exit
9

CANDY

MACHINE:

CREATING

A GUI

If you skipped the GUI part of Chapter 6, you can skip this section.

We will now design an application program that creates the GUI shown in Figure 8-21.

FIGURE 8-21 GUI for the candy machine

Programming Example: Candy Machine | 491

Apago PDF Enhancer

The program should do the following:

1. Show the customer the above GUI.

2. Let the customer make the selection.

3. When the user clicks on a product, show the customer its cost, and
prompt the customer to enter the money for the product using an
input dialog box, as shown in Figure 8-22.

4. Accept the money from the customer.

5. Make the sale and display a dialog box, as shown in Figure 8-23.

In the first part of this programming example, we designed and implemented the
classes CashRegister and Dispenser. Our final step is to revise the main program
of the first part to create a GUI.

MAIN

PROGRAM

We now describe how to create the candy machine using the classes
CashRegister and Dispenser and the GUI components. When the program
executes, it must display the GUI shown earlier in Figure 8-21.

The GUI contains a window, two labels, and five buttons. The labels and buttons are
placed in the content pane of the window. As you learned in Chapter 6, to create the

FIGURE 8-22 Input dialog box to enter money for the candy machine

FIGURE 8-23 Output dialog box to show the output of the candy machine

492 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

window, the application program is created by extending the definition of the
class JFrame. Thus, we need the following GUI components:

private JLabel headingMainL; //label for the first line

private JLabel selectionL; //label for the second line

private JButton exitB, candyB, chipsB, gumB, cookiesB;

The following statements create and instantiate these labels and button objects:

headingMainL = new JLabel("WELCOME TO SHELLY'S CANDY SHOP",
SwingConstants.CENTER);

selectionL = new JLabel("To Make a Selection, "
+ "Click on the Product Button",

SwingConstants.CENTER);

candyB = new JButton("Candy");

chipsB = new JButton("Chips");

gumB = new JButton("Gum");

cookiesB = new JButton("Cookies");

exitB = new JButton("Exit");

These components are to be placed in the content pane of the window. The seven
components—labels and buttons—are arranged in seven rows. Therefore, the content
pane layout will be a grid of 7 rows and 1 column. The following statements get the
content pane and add these components to the content pane:

Container pane = getContentPane();
setSize(300, 300);

pane.setLayout(new GridLayout(7,1));

pane.add(headingMainL);
pane.add(selectionL);
pane.add(candyB);
pane.add(chipsB);
pane.add(gumB);
pane.add(cookiesB);
pane.add(exitB);

EVENT

HANDLING

When the user clicks on a product button, it generates an action event. There are five
buttons, each generating an action event. To handle these action events, we use the
same process that we used in Chapter 6. That is:

Programming Example: Candy Machine | 493

Apago PDF Enhancer

1. Create a class implementing the interface ActionListener.

2. Provide the definition of the method actionPerformed.

3. Create and instantiate an object, action listener, of the class type
created in Step 1.

4. Register the listener of Step 3 to each button.

In Chapter 6, we created a separate class for each of the buttons and then created a
separate listener for each button. In this new program, rather than create a separate
class for each button, we create only one class. Recall that the heading of the method
actionPerformed is:

public void actionPerformed(ActionEvent e)

In Chapter 6, while providing the definition of this method, we ignored the formal
parameter e. The formal parameter e is a reference variable of the ActionEvent

type. The class ActionEvent contains getActionCommand (a method without
parameters), which can be used to identify which button generated the event. For
example, the expression:

e.getActionCommand()

returns the string containing the label of the component generating the event. We can
now use the appropriate Stringmethod to determine the button generating the event.

If the user clicks on one of the product buttons, then the candy machine attempts to
sell the product. Therefore, the action of clicking on a product button is to sell. For
this, we write the method sellProduct (discussed later in this programming
example). If the user clicks on the Exit button, the program should terminate. Let’s
call the class to handle these events ButtonHandler. Its definition is:

private class ButtonHandler implements ActionListener
{

public void actionPerformed (ActionEvent e)
{

if (e.getActionCommand().equals("Exit"))
System.exit(0);

else if (e.getActionCommand().equals("Candy"))
sellProduct(candy, "Candy");

else if (e.getActionCommand().equals("Chips"))
sellProduct(chips, "Chips");

else if (e.getActionCommand().equals("Gum"))
sellProduct(gum, "Gum");

else if (e.getActionCommand().equals("Cookies"))
sellProduct(cookies, "Cookies");

}
}

494 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

You can now declare, instantiate, and register the listener as follows:

private ButtonHandler pbHandler; //declare the listener

pbHandler = new ButtonHandler(); //instantiate the object

//register the listener with each button
candyB.addActionListener(pbHandler);
chipsB.addActionListener(pbHandler);
gumB.addActionListener(pbHandler);
cookiesB.addActionListener(pbHandler);
exitB.addActionListener(pbHandler);

Next, we describe the method sellProduct.

Method

sellProduct
The definition of this method is similar to the one we designed for the non-GUI
program. (We give the definition here for the sake of completeness.) This method
attempts to sell a particular product selected by the customer. The candy machine
contains four dispensers, which correspond to the four products. These dispensers will
be declared as instance variables. Therefore, the dispenser of the product to be sold
and the name of the product are passed as parameters to this method. Because the
cash register will be declared as an instance variable, this method can directly access the
cash register.

This definition of the method sellProduct is:

private void sellProduct(Dispenser product, String productName)
{

int coinsInserted = 0;
int price;
int coinsRequired;
String str;

if (product.getCount() > 0)
{

price = product.getProductCost();
coinsRequired = price - coinsInserted;

while (coinsRequired > 0)
{

str = JOptionPane.showInputDialog("To buy "
+ productName
+ " please insert "
+ coinsRequired + " cents");

Programming Example: Candy Machine | 495

Apago PDF Enhancer

coinsInserted = coinsInserted
+ Integer.parseInt(str);

coinsRequired = price - coinsInserted;
}

cashRegister.acceptAmount(coinsInserted);
product.makeSale();

JOptionPane.showMessageDialog(null,"Please pick up your "
+ productName + " and enjoy",
"Thank you, Come again!",

JOptionPane.PLAIN_MESSAGE);
}
else //dispenser is empty

JOptionPane.showMessageDialog(null,"Sorry "
+ productName
+ " is sold out\n" +
"Make another selection",
"Thank you, Come again!",
JOptionPane.PLAIN_MESSAGE);

}//end sellProduct

We have described the method sellProduct and the other necessary components,
so next we will write the Java application program for the candy machine.

The algorithm is as follows:

1. Create the cash register—that is, declare a reference variable of type
CashRegister and instantiate the object.

2. Create four dispensers—that is, declare four reference variables of
type Dispenser and instantiate the appropriate Dispenser objects.
For example, the statement:

Dispenser candy = new Dispenser(100, 50);

declares candy to be a reference variable of the Dispenser type and instantiates the
object candy to hold the candies. The number of items in the object candy is 100,
and the cost of a candy is 50 cents.

3. Create the other objects, such as labels and buttons, as previously
described.

4. Display the GUI showing the candy machine, as described at the
beginning of this programming example.

5. Get and process the selection.

The complete programming listing is available on theWeb site and the CD accompanying
this book.

496 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

QUICK REVIEW

1. A class is a collection of a specific number of components.

2. Components of a class are called the members of the class.

3. Members of a class are accessed by name.

4. In Java, class is a reserved word, and it defines only a data type; no
memory is allocated.

5. Members of a class are classified into four categories. The three typically
used categories are private, protected, or public.

6. The private members of a class are not directly accessible outside the class.

7. The public members of a class are accessible outside the class.

8. The public members are declared using the modifier public.

9. The private members are declared using the modifier private.

10. A member of a class can be a method, a variable, or an inner class.

11. If any member of a class is a variable, it is declared like any other variable.

12. In Java, a class is a definition.

13. Non-static variables of a class are called instance variables of that class.

14. Non-static methods of a class are called instance methods.

15. Constructors permit the data members to be initialized when an object is
declared.

16. The name of a constructor is the same as the name of the class.

17. A class can have more than one constructor.

18. A constructor without parameters is called the default constructor.

19. Constructors automatically execute when a class object is created.

20. In a UML class diagram, the top box contains the name of the class. The
middle box contains the data members and their data types. The bottom
box contains the methods’ names, parameter list, and return type. A + (plus)
sign in front of a member indicates that the member is a public member;
a - (minus) sign indicates that this is a private member. The # symbol
before a member name indicates that the member is a protected member.

21. In shallow copying, two or more reference variables of the same type refer
to the same object.

22. In deep copying, each reference variable refers to its own object.

23. A reference variable follows the same scope rules as other variables.

24. A member of a class is local to the class.

25. You access a public class member outside the class through the
reference variable name or the class name (for static members) and
the member access operator (.).

8

Quick Review | 497

Apago PDF Enhancer

26. The copy constructor executes when an object is instantiated and initialized
using an existing object.

27. The method toString is a public value-returning method. It does not
take any parameters and returns the address of a String object.

28. The methods print, println, and printf output the string created by
the method toString.

29. The default definition of the method toString creates a String that is the
name of the object’s class name followed by the object’s hash code.

30. The modifier static in the heading of the method of a class specifies that
the method can be invoked by using the name of the class.

31. If a data member of a class is declared using the modifier static, that data
member can be invoked by using the name of the class.

32. static data members of a class exist even when no object of the class
type is instantiated. Moreover, static variables are initialized to their
default values.

33. Finalizers automatically execute when a class object goes out of scope.

34. A class can have only one finalizer, and the finalizer has no parameters.

35. The name of the finalizer is finalize.

36. A method of a class that only accesses (that is, does not modify) the value(s)
of the data member(s) is called an accessor method.

37. A method of a class that modifies the value(s) of the data member(s) is called
a mutator method.

38. Java implicitly uses the reference this to refer to both the instance variables
and the methods of a class.

39. Classes that are defined within another class are called inner classes.

40. A data type that specifies the logical properties without the implementation
details is called an abstract data type (ADT).

EXERCISES

1. Mark the following statements as true or false:

a. The instance variables of a class must be of the same type.

b. The methods of a class must be public.

c. A class can have more than one constructor.

d. A constructor can return a value of the int type.

e. An accessor method of a class accesses and modifies the data members
of the class.

498 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer 8

2. Find the syntax errors in the definitions of the following classes:

a. public class AA
{

private int x;
private int y;

public void print()
{

System.out.println(x + " " + y);
}
public int sum()

{

return x + y;
}

public AA()
{

x = 0;

y = 0;
}

public int AA(int a, int b)
{

x = a;

y = b;
}

}

b. public class BB
{

private int one;
private int two;

public boolean equal()
{

return (one == two);
}

public print()
{

System.out.println(one + " " + two);
}

public BB(int a, int b)
{

one = a;
two = b;

}
}

Exercises | 499

Apago PDF Enhancer

3. Consider the definition of the following class:

class CC
{

private int u;
private int v;
private double w;

public CC() //Line 1
{
}

public CC(int a) //Line 2
{
}

public CC(int a, int b) //Line 3
{
}

public CC(int a, int b, double d) //Line 4
{
}

}

a. Give the line number containing the constructor that is executed in
each of the following declarations:

i. CC one = new CC();

ii. CC two = new CC(5, 6);

iii. CC three = new CC(2, 8, 3.5);

b. Write the definition of the constructor in Line 1 so that the instance
variables are initialized to 0.

c. Write the definition of the constructor in Line 2 so that the instance
variable u is initialized according to the value of the parameter, and the
instance variables v and w are initialized to 0.

d. Write the definition of the constructor in Line 3 so that the instance
variables u and v are initialized according to the values of the parameters
a and b, respectively, and the instance variable w is initialized to 0.0.

e. Write the definitions of the constructors in Line 4 so that the instance
variables u, v, and w are initialized according to the values of the
parameters a, b, and d, respectively.

4. Write a Java statement that creates the object mysteryClock of the Clock

type and initializes the instance variables hr, min, and sec of mysteryClock
to 7, 18, and 39, respectively.

5. Given the statements:

Clock firstClock = new Clock(2, 6, 35);
Clock secondClock = new Clock(6, 23, 17);
firstClock = secondClock;

500 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

what is the output of the following statements?

firstClock.print();
System.out.println();
secondClock.print();
System.out.println();

6. Consider the following declarations:

public class XClass
{

private int u;
private double w;

public XClass()
{
}

public XClass(int a, double b)
{
}

public void func()
{
}

public void print()
{
}

}

XClass x = new XClass(10, 20.75);

a. How many members does class XClass have?

b. How many private members does class XClass have?

c. How many constructors does class XClass have?

d. Write the definition of the member func so that u is set to 10 and w is
set to 15.3.

e. Write the definition of the member print that prints the contents of u
and w.

f. Write the definition of the default constructor of the class XClass so
that the instance variables are initialized to 0.

g. Write the definition of the constructor with parameters of the class
XClass so that the instance variable u is initialized to the value of a and
the instance variable w is initialized to the value of b.

h. Write a Java statement that prints the values of the instance variables of x.

i. Write a Java statement that creates the XClass object t and initializes
the instance variables of t to 20 and 35.0, respectively.

8

Exercises | 501

Apago PDF Enhancer

7. Explain shallow copying.

8. Explain deep copying.

9. Suppose that two reference variables, say aa and bb, of the same type point
to two different objects. What happens when you use the assignment
operator to copy the value of aa into bb?

10. Assume that the method toString is defined for the class Clock as given
in this chapter. What is the output of the following statements?

Clock firstClock;
Clock secondClock = new Clock(6, 23, 17);

firstClock = secondClock.getCopy();

System.out.println(firstClock);

11. What is the purpose of the copy constructor?

12. How does Java use the reference this?

13. Can you use the relational operator ¼¼ to determine whether two different
objects of the same class type contain the same data?

14. Consider the definition of the following class:

class TestClass
{

private int x;
private int y;

//Default constructor to initialize
//the instance variables to 0

public TestClass()
{
}

//Constructors with parameters to initialize the
//instance variables to the values specified by
//the parameters
//Postcondition: x = a; y = b;

TestClass(int a, int b)
{
}

//return the sum of the instance variables
public int sum()
{
}

//print the values of the instance variables
public void print()
{
}

}

502 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

a. Write the definitions of the methods as described in the definition of
the class TestClass.

b. Write a test program to test various operations of the class
TestClass.

15. Write the definition of a class that has the following properties:

a. The name of the class is Secret.

b. The class Secret has four instance variables: name of type String,
age and weight of type int, and height of type double.

c. The class Secret has the following methods:

print—outputs the data stored in the data members with the appro-
priate titles

setName—method to set the name

setAge—method to set the age

setWeight—method to set the weight

setHeight—method to set the height

getName—value-returning method to return the name

getAge—value-returning method to return the age

getWeight—value-returning method to return the weight

getHeight—value-returning method to return the height

default constructor—the default value of name is the empty string "";
the default values of age, weight, and height are 0

constructor with parameters—sets the values of the instance variables
name, age, weight, and height to the values specified by the user

d. Write the definitions of the method members of the class Secret, as
described in part c.

16. Consider the following definition of the class MyClass:

class MyClass
{

private int x;
private static int count;

//default constructor
//Postcondition: x = 0

public MyClass()
{

//write the definition
}

//constructor with a parameter
//Postcondition: x = a

public MyClass(int a)

8

Exercises | 503

Apago PDF Enhancer

{
//write the definition

}

//Method to set the value of x
//Postcondition: x = a

public void setX(int a);
{

//write the definition
}

//Method to output x.
public void printX()
{

//write the definition
}

//Method to output count
public static void printCount()
{

//write the definition
}

//Method to increment count
//Postcondition: count++

public static int incrementCount()
{

//write the definition
}

}

a. Write a Java statement that increments the value of count by 1.

b. Write a Java statement that outputs the value of count.

c. Write the definitions of the methods and the constructors of the class
MyClass as described in its definition.

d. Write a Java statement that declares myObject1 to be a MyClass object
and initializes its instance variable x to 5.

e. Write a Java statement that declares myObject2 to be a MyClass object
and initializes its instance variable x to 7.

f. Which of the following statements are valid? (Assume that myObject1
and myObject2 are as declared in parts d and e.)

myObject1.printCount(); //Line 1
myObject1.printX(); //Line 2
MyClass.printCount(); //Line 3
MyClass.printX(); //Line 4
MyClass.count++; //Line 5

504 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

g. Assume that myObject1 and myObject2 are as declared in parts d
and e. After you have written the definition of the methods of the
class MyClass, what is the output of the following Java code?

myObject1.printX();
myObject1.incrementCount();
MyClass.incrementCount();
myObject1.printCount();
myObject2.printCount();
myObject2.printX();
myObject1.setX(14);
myObject1.incrementCount();
myObject1.printX();
myObject1.printCount();
myObject2.printCount();

PROGRAMMING EXERCISES

1. The class Clock given in the chapter only allows the time to be incre-
mented by one second, one minute, or one hour. Rewrite the definition of
the class Clock by including additional members so that time can also be
decremented by one second, one minute, or one hour. Also write a program
to test your class.

2. Write a program that converts a number entered in Roman numerals to
decimal. Your program should consist of a class, say, Roman. An object of
type Roman should do the following:

a. Store the number as a Roman numeral.

b. Convert and store the number into decimal.

c. Print the number as a Roman numeral or decimal number as requested
by the user.

The decimal values of the Roman numerals are:

M 1000
D 500
C 100
L 50
X 10
V 5
I 1

d. Test your program using the following Roman numerals: MCXIV,
CCCLIX, and MDCLXVI.

8

Programming Exercises | 505

Apago PDF Enhancer

3. Design and implement the class Day that implements the day of the week
in a program. The class Day should store the day, such as Sun for Sunday.
The program should be able to perform the following operations on an
object of type Day:

a. Set the day.

b. Print the day.

c. Return the day.

d. Return the next day.

e. Return the previous day.

f. Calculate and return the day by adding certain days to the current day.
For example, if the current day is Monday and we add four days, the day
to be returned is Friday. Similarly, if today is Tuesday and we add 13
days, the day to be returned is Monday.

g. Add the appropriate constructors.

h. Write the definitions of the methods to implement the operations for the
class Day, as defined in a through g.

i. Write a program to test various operations on the class Day.

4. a. Example 8-7 defined the class Person to store the name of a person.
The methods that we included merely set the name and print the name
of a person. Redefine the class Person so that, in addition to what the
existing class does, you can:

i. Set the last name only.

ii. Set the first name only.

iii. Set the middle name.

iv. Check whether a given last name is the same as the last name of this
person.

v. Check whether a given first name is the same as the first name of
this person.

vi. Check whether a given middle name is the same as the middle
name of this person.

b. Add the method equals that returns true if two objects contain the
same first, middle, and last name.

c. Add the method makeCopy that copies the instance variables of a
Person object into another Person object.

d. Add the method getCopy that creates and returns the address of the
object, which is a copy of another Person object.

e. Add the copy constructor.

f. Write the definitions of the methods of the class Person to implement
the operations for this class.

g. Write a program that tests various operations of the class Person.

506 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

5. Redo Example 7-3, Chapter 7, so that it uses the class RollDie to roll a die.

6. a. Some of the characteristics of a book are the title, author(s), publisher,
ISBN, price, and year of publication. Design the class Book that
defines the book as an ADT.

Each object of the class Book can hold the following information
about a book: title, up to four authors, publisher, ISBN, price, year of
publication, and number of copies in stock. To keep track of the number
of authors, add another instance variable.

Include the methods to perform various operations on the objects of
Book. For example, the usual operations that can be performed on the title
are to show the title, set the title, and check whether a title is the actual title
of the book. Similarly, the typical operations that can be performed on the
number of copies in stock are to show the number of copies in stock, set the
number of copies in stock, update the number of copies in stock, and return
the number of copies in stock. Add similar operations for the publisher,
ISBN, book price, and authors. Add the appropriate constructors.

b. Write the definitions of the methods of the class Book.

c. Write a program that uses the class Book and tests various operations
on the objects of class Book.

7. In this exercise, you will design the class Member.

a. Each object of Member can hold the name of a person, member ID,
number of books bought, and amount spent.

b. Include the methods to perform the various operations on the objects of
the class Member—for example, modify, set, and show a person’s
name. Similarly, update, modify, and show the number of books bought
and the amount spent.

c. Write the definitions of the methods of the class Member. Also write a
program to test your class.

8. The equation of a line in standard form is ax + by ¼ c, where a and b both
cannot be zero, and a, b, and c are real numbers. If b 6¼ 0, then –a / b is the
slope of the line. If a ¼ 0, then it is a horizontal line, and if b ¼ 0, then it is a
vertical line. The slope of a vertical line is undefined. Two lines are parallel if
they have the same slope or both are vertical lines. Two lines are perpendi-
cular if one of the lines is horizontal and another is vertical, or if the product
of their slopes is –1. Design the class lineType to store a line. To store a
line, you need to store the values of a (coefficient of x), b (coefficient of y),
and c. Your class must contain the following operations:

a. If a line is nonvertical, then determine its slope.

b. Determine if two lines are equal. (Two lines a1x+ b1y¼ c1 and a2x+ b2y¼ c2
are equal if either a1 ¼ a2, b1 ¼ b2, and c1 ¼ c2 or a1 ¼ ka2, b1 ¼ kb2, and
c1 ¼ kc2 for some real number k.)

8

Programming Exercises | 507

Apago PDF Enhancer

c. Determine if two lines are parallel.

d. Determine if two lines are perpendicular.

e. If two lines are not parallel, then find the point of intersection.

Add appropriate constructors to initialize variables of lineType. Also write
a program to test your class.

9. Rational fractions are of the form a / b, where a and b are integers and b 6¼ 0.
In this exercise, by ‘‘fractions’’ we mean rational fractions. Suppose that a / b and
c / d are fractions. Arithmetic operations on fractions are defined by the following
rules:

a / b + c / d ¼ (ad + bc) / bd
a / b – c / d ¼ (ad – bc) / bd
a / b � c / d ¼ ac / bd
(a / b) / (c / d) ¼ ad / bc, where c / d 6¼ 0

Fractions are compared as follows: a / b op c / d if ad op bc, where op is any of
the relational operations. For example, a / b < c / d if ad < bc.

Design the class Fraction that can be used to manipulate fractions in a
program. Among others, the class Fraction must include methods to add,
subtract, multiply, and divide fractions. When you add, subtract, multiply, or
divide fractions, your answer need not be in the lowest terms. Also, override the
method toString so that the fractions can be output using the output statement.

Write a Java program that, using the class Fraction, performs operations on
fractions.

508 | Chapter 8: User-Defined Classes and ADTs

Apago PDF Enhancer

CHAP T ER

9
ARRAYS

I N TH IS CHAPTER , YOU WIL L :

n Learn about arrays

n Explore how to declare and manipulate data in arrays

n Learn about the instance variable length

n Understand the meaning of "array index out of bounds"

n Become aware of how the assignment and relational operators

work with array names

n Discover how to pass an array as a parameter to a method

n Learn how to search an array

n Discover how to manipulate data in a two-dimensional array

n Learn about multidimensional arrays

n Become acquainted with the class Vector

Apago PDF Enhancer

In previous chapters, you worked with primitive data types and learned how to construct
your own classes. Recall that a variable of a primitive data type can store only one value
at a time; on the other hand, a class can be defined so that its objects can store more
than one value at a time. This chapter introduces a special data structure called an array,
which allows the user to group data items of the same type and process them in a
convenient way.

Why Do We Need Arrays?
Before we formally define an array, let’s consider the following problem. We want to
write a Java program that reads five numbers, finds their sum, and prints the numbers in
reverse order.

In Chapter 5, you learned how to read numbers, print them, and find their sum. What’s
different here is that we want to print the numbers in reverse order. We cannot print the
first four numbers until we have printed the fifth, and so on. This means that we need to
store all the numbers before we can print them in reverse order. From what we have
learned so far, the following program accomplishes this task:

//Program to read five numbers, find their sum, and print the
//numbers in the reverse order.

import java.util.*;

public class ReversePrintI
{

static Scanner console = new Scanner(System.in);

public static void main(String[] args)
{

int item0, item1, item2, item3, item4;
int sum;

System.out.println("Enter five integers: ");
item0 = console.nextInt();
item1 = console.nextInt();
item2 = console.nextInt();
item3 = console.nextInt();
item4 = console.nextInt();

sum = item0 + item1 + item2 + item3 + item4;

System.out.println("The sum of the numbers = " + sum);
System.out.print("The numbers in reverse order are: ");
System.out.println(item4 + " " + item3 + " " + item2

+ " " + item1 + " " + item0);
}

}

510 | Chapter 9: Arrays

Apago PDF Enhancer

This program works fine. However, to read 100 (or more) numbers and print them
in reverse order, you would have to declare 100 or more variables and write many input
and output statements. Thus, for large amounts of data, this type of program is not desirable.

Note the following in the preceding program:

1. Five variables must be declared because the numbers are to be printed in
reverse order.

2. All variables are of type int—that is, of the same data type.

3. The way in which these variables are declared indicates that the variables
to store these numbers have the same name except for the last character,
which is a number.

From 1, it follows that you have to declare five variables. From 3, it follows that it would
be convenient if you could somehow put the last character, which is a number, into a
counter variable and use one for loop to count from 0 to 4 for reading, and use another
for loop to count from 4 to 0 for printing. Finally, because all the variables are of the
same type, you should be able to specify how many variables must be declared—as well as
their data type—with a simpler statement than the one used previously.

The data structure that lets you do all of these things in Java is called an array.

Arrays
An array is a collection (sequence) of a fixed number of variables called elements or
components, wherein all the elements are of the same data type. A one-dimensional

array is an array in which the elements are arranged in a list form. The remainder of this
section discusses one-dimensional arrays. Arrays of two or more dimensions are discussed
later in this chapter.

The general form to declare a one-dimensional array is:

dataType[] arrayName; //Line 1

where dataType is the element type.

In Java, an array is an object, just like the objects discussed in Chapter 8. Because an array is an
object, arrayName is a reference variable. Therefore, the preceding statement only declares a
reference variable. Before we can store the data, we must instantiate the array object.

The general syntax to instantiate an array object is:

arrayName = new dataType[intExp]; //Line 2

9

Arrays | 511

Apago PDF Enhancer

where intExp is any expression that evaluates to a positive integer. Also, the value of
intExp specifies the number of elements in the array.

You can combine the statements in Lines 1 and 2 into one statement as follows:

dataType[] arrayName = new dataType[intExp]; //Line 3

We typically use statements similar to the one in Line 3 to create arrays to manipulate
data.

When an array is instantiated, Java automatically initializes its elements to their default

values. For example, the elements of numeric arrays are initialized to 0, the elements

of char arrays are initialized to the null character, which is '\u0000', the elements of

boolean arrays are initialized to false.

EXAMPLE 9-1

The statement:

int[] num = new int[5];

declares and creates the array num consisting of 5 elements. Each element is of type int.
The elements are accessed as num[0], num[1], num[2], num[3], and num[4]. Figure 9-1
illustrates the array num.

num[0]

num[1]

num[2]

num[3]

num[4]

num

0

0

0

0

0

FIGURE 9-1 Array num

512 | Chapter 9: Arrays

Apago PDF Enhancer

To save space, we also draw an array, as shown in Figure 9-2(a) and 9-2(b).

Alternate Ways to Declare an Array
Java allows you to declare arrays as follows:

int list[]; //Line 1

Here, the operator [] appears after the identifier list, not after the data type int.

You should be careful when declaring arrays as in Line 1. Consider the following statements:

int alpha[], beta; //Line 2
int[] gamma, delta; //Line 3

The statement in Line 2 declares the variables alpha and beta. Similarly, the statement
in Line 3 declares the variables gamma and delta. However, the statement in Line 2
declares only alpha to be an array reference variable, while the variable beta is an int
variable. On the other hand, the statement in Line 3 declares both gamma and delta to
be array reference variables.

Traditionally, Java programmers declare arrays as shown in Line 3. We recommend that
you do the same.

Accessing Array Elements
The general form (syntax) used to access an array element is:

arrayName[indexExp]

where indexExp, called the index, is an expression whose value is a nonnegative integer
less than the size of the array. The index value specifies the position of the element in the
array. In Java, the array index starts at 0.

In Java, [] is an operator called the array subscripting operator.

9

num[0] num[1] num[2] num[3] num[4]num
0 0 0 0 0

[0] [1] [2] [3] [4]num
0 0

(b))a(

0 0 0

FIGURE 9-2 Array num

Arrays | 513

Apago PDF Enhancer

Consider the following statement:

int[] list = new int[10];

This statement declares an array list of 10 elements. The elements are
list[0], list[1], . . ., list[9]. In other words, we have declared 10 variables of type
int (see Figure 9-3).

The assignment statement:

list[5] = 34;

stores 34 into list[5], which is the sixth element of the array list (see Figure 9-4).

Suppose i is an int variable. Then, the assignment statement:

list[3] = 63;

is equivalent to the assignment statements:

i = 3;
list[i] = 63;

If i is 4, then the assignment statement:

list[2 * i - 3] = 58;

stores 58 into list[5], because 2 * i - 3 evaluates to 5. The index expression is
evaluated first, giving the position of the element in the array.

Next, consider the following statements:

list[3] = 10;
list[6] = 35;
list[5] = list[3] + list[6];

[0]

list 0

[1] [2]

0

[3] [4] [5]

34

[6]

0

[8]

00 0 0 0 0

[9]

0

[7]

0 0

FIGURE 9-4 Array list after the execution of the statement list[5]= 34;

[0]

list 0

[1] [2]

0

[3] [4] [5]

0

[6]

0

[8]

00 0 0 0 0

[9]

0

[7]

0 0

FIGURE 9-3 Array list

514 | Chapter 9: Arrays

Apago PDF Enhancer

The first statement stores 10 into list[3], the second statement stores 35 into list[6],
and the third statement adds the contents of list[3] and list[6] and stores the result
into list[5] (see Figure 9-5).

EXAMPLE 9-2

You can also declare arrays as follows:

final int ARRAY_SIZE = 10;
int[] list = new int[ARRAY_SIZE];

That is, you can first declare a named constant of an integral type, such as int, and then
use the value of the named constant to specify the size of the array.

Specifying Array Size during Program Execution
When you include a statement in a program to instantiate an array object, it is not
necessary to know the size of the array at compile time. During program execution, you
can first prompt the user to specify the size of the array and then instantiate the object.
The following statements illustrate this concept (suppose that console is a Scanner

object initialized to the standard input device):

int arraySize; //Line 1

System.out.print("Enter the size of the array: "); //Line 2
arraySize = console.nextInt(); //Line 3
System.out.println(); //Line 4

int[] list = new int[arraySize]; //Line 5

The statement in Line 2 asks the user to enter the size of the array when the program
executes. The statement in Line 3 inputs the size of the array into arraySize.
During program execution, the system uses the value of the variable arraySize to
instantiate the object list. For example, if the value of arraySize is 15, list is an
array of size 15.

9

[0]

list 0

[1] [2]

0

[3] [4] [5]

45

[6]

0

[8]

00 10 0 35 0

[9]

0

[7]

0 0

FIGURE 9-5 Array list after the execution of the statements list[3]= 10;, list[6]= 35;,
and list[5] = list[3] + list[6];

Arrays | 515

Apago PDF Enhancer

Array Initialization during Declaration
Like any other primitive data type variable, an array can also be initialized with specific
values when it is declared. For example, the following Java statement declares an array,
sales, of five elements and initializes those elements to specific values:

double[] sales = {12.25, 32.50, 16.90, 23, 45.68};

The initializer list contains values, called initial values, that are placed between braces
and separated by commas. Here, sales[0] = 12.25, sales[1] = 32.50, sales[2] =

16.90, sales[3] = 23.00, and sales[4]= 45.68.

Note the following about declaring and initializing arrays:

• When declaring and initializing arrays, the size of the array is determined
by the number of initial values in the initializer list within the braces.

• If an array is declared and initialized simultaneously, we do not use the
operator new to instantiate the array object.

Arrays and the Instance Variable length
Recall that an array is an object; therefore, to store data, the array object must be
instantiated. Associated with each array that has been instantiated (that is, for which
memory has been allocated to store data), there is a public (final) instance variable
length. The variable length contains the size of the array. Because length is a public
member, it can be directly accessed in a program using the array name and the dot
operator.

Consider the following declaration:

int[] list = {10, 20, 30, 40, 50, 60};

This statement creates the array list of six elements and initializes the elements using the
values given. Here, list.length is 6.

Consider the following statement:

int[] numList = new int[10];

This statement creates the array numList of 10 elements and initializes each element to 0.
Because the number of elements of numList is 10, the value of numList.length is 10.
Now consider the following statements:

numList[0] = 5;
numList[1] = 10;
numList[2] = 15;
numList[3] = 20;

These statements store 5, 10, 15, and 20, respectively, in the first four elements of
numList. Even though we put data into only the first four elements, the value of
numList.length is 10, the total number of array elements.

516 | Chapter 9: Arrays

